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Abstract This paper investigates the application of a
Recurrent Wavelet Neural Network(RWNN) to the
blind equalization of nonlinear communication
channels. We propose a RWNN based structure and a
novel training approach for blind equalization, and we
evaluate its performance via computer simulations for
nonlinear communication channel model. It is shown
that the RWNN blind equalizer performs much better
than the linear CMA and the RRBF blind equalizers in
nonlinear channel case. The small size and high
performance of the RWNN equalizer make it suitable
for high speed channel blind equalization.
I. Introduction

The performance of digital communication system
is largely affected by an ability to overcome the channel
impairments during signal propagation. Traditional
techniques for communication channel equalization are
based on linear transversal equalizers(LTE's), whose
coefficients are being adjusted to match the channel
characteristics. Depending on whether the equalizer
knows an originally transmitted sequence or not, it is
characterized as trained adaptation or blind equalizer
respectively. Blind equalization is a particularly useful
and difficult type of equalization, as for example in the
case of multipoint communication networks. Blind
equalization schemes such as the Constant Modulus
Algorithm(CMA)[1], the Tricepstrum Equalization
Algorithm(TEA)[2], Recurrent Radial Basis
Function(RRBF) Networks based blind equalizer[3] et al.

have been developed for linear channels. The use of
these schemes with nonlinear unknown channels is
questionable.

Blind equalization
nonlinear problem and it is desired to incorporate some
nonlinearity in the equalizer structure. A Recurrent
Wavelet Neural Network(RWNN) being essentially an
IIR nonlinear filter, can be trained to have desired
dynamical behavior, using a stochastic gradient
approach via the Real Time Recurrent Learning(RTRL)
algorithm. In this paper we propose the use of a RWNN

is however an inherently

equalizer for the blind equalization of nonlinear
channels. A novel training approach using only a partly
set of statistics of the transmitted signal is introduced. It
is shown that the RWNNs of reasonable size have the
ability to accurately model the inverse of a
communication channel with a performance superior
than that of the traditional equalization algorithms. The
properties of a RWNN make it attractive for the blind
equalization of nonlinear channels.

II. Recurrent Wavelet Neural
Networks

Some recent works relating neural networks and
wavelets appeared in the literaturef4, 5], the classical
feedforward network  with
sigmoidal units is replaced by a wavelet neural network
with the Morlet wavelet as activation function.

approximator neural
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Recurrent Wavelet Neural Networks, in which
every unit is connected to every other unit, are highly
nonlinear dynamical systems that exhibit a rich and
complex dynamical behavior. In contrast to the wavelet
network introduced in [4, 5], the RWNN is well suited
for use in real time adaptive signal processing.
Furthermore, the RWNN has the advantage that a priori
information of the underlying system need not be known,
the dynamics of the system are configured in the
recurrent connections and the network approximates the
system over time.

Fig. 1 Recurrent wavelet neural network
A RWNN depicted in Fig.1 has »n units and m

external input(including the bias input). The output
node in general is a linear element so that the entire
dynamic range of the system can be captured. Rest of
the nodes take a multidimensional wavelet Y(¥). Let
¥(t) denote the n-tuple of outputs of the units in the
network and let X¥(f) denote the m-tuple of external
inputs to the network at time 7 . It will be convenient in
what follows to define Z(f) to be (m+n)-tuple obtained
by concatenating ¥(f) and Y(*) . To distinguish the
components of Z(f) representing the unit outputs from
those representing external input values where
necessary, let U denote the set of indices k& such that
Zk , the k th component of Z , is the output of a unit in
the network, and let 7/ denote the set of indices £ for
which 2z is an external input, i.e.
The output of the network is

yat+) ="'z  z=[x77 @)
where W is the weight vector between the output unit
and the remaining nodes in the network. The outputs of
the rest of the nodes is given by
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translation and dilation parameters which are
independent of each other. Here we consider a
multidimensional wavelet as the direct product of one
dimensional wavelets.

where

The instantaneous error at time ¢ +1 is given by

E@t+1)= %[d,,(t +) -y, +D)? = %e,% @

where 9n(t+1D js the desired output of the network.
Our objective is to minimize £(f+1) in the parameter
space spanned by w,i and s . For this we compute the
gradient of E(f+1) in the parameter space, the update
rule is

Aw, =, ZE(+)) = e, G(t+1)

M; M; (5a)
Ei+1 t+1
i if (5b)
K+l N, (t+])
Asy =1y = = 1136, T~

where 1, 712 and 773 are the learning rates.

The RTRL algorithm consists of computing at each
time step ¢, the parameter changes given by equation
(53, b, ¢).

ll. The RWNN Blind Equalizer

The digital communication system considered is
illustrated in Fig. 2, where a binary sequence S(f) is
transmitted through a nonlinear channel and then
corrupted by additive white Gaussian noise. The
transmitted signal S(f) is assumed to be an independent
sequence taking values of either 1 or -1 with equal
probability. If the output of the equalizer(RWNN in our
case) is exactly the same as the transmitted signal (with
a possible time delay, and/or phase shift) then it should
have the same moments as the transmitted signal.
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Fig. 2. The block diagram of the communication system with
RWNN blind equatizer
We would like to minimize, at time f+1, the
objective function:

4
E(t+1)=Y azel(t+1)
k=1

4
= Y ap(Eats*y-E6* )’

k=1 )
where £:+1 denote the estimated mean value using the
t+1 output of the RWNN and &k are positive
constants that define the weight of the corresponding
term €k in the objective function (6). We would like to
derive a way to update the parameters of the RWNN,
depending on the output at time ¢+1, namely S(t+1),
so that the objective function (6) gets minimized.

Each of the four mean values in (6) can be

computed recursively using averaging as:

aky_ 1 aky ok
Ein{s }—H_l(tEt{s y+sT(t+1) D

Differentiating £(f+1) with respect to the current
weights Yi, translation and dilation parameter ’&i» Ski
can be computed recursively. Therefore, the algorithm
for the minimization of the objective function (6) with a
RWNN via the RTRL becomes:

1) Initialize the estimates for £o{8*} to zero for
k=1234

2) Present a new sample of the channel output to the
RWNN input. Compute the RWNN 5(f +1) using (2).

3) Update the moment estimates
E a8} k=12,3,4 ysing (7).

4) Update the weights, translation and dilation
parameters in the direction of the steepest descent with
learning rate 771> 772 and 773 respectively.

5) Go to Step 2, unless the objective function has
been sufficiently minimized.
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IV. RWNN Blind Equalization

Simulations

In our simulations we evaluated the performance of
the proposed RWNN blind equalizer for nonlinear
communication channel and the results were compared
to those obtained with a RRBF blind equalizer and a
linear CMA equalizer based on the Godard criterion.
The model of the nonlinear channel used for the
simulations is

() = C(s(1))
= s(£)+05s(¢ - 1)~ 09[s(£) + 05s(¢ - D]* ®)

and white Gaussian noise €(t) with E{e?(1)}=02

The RWNN blind equalizer has three units, one
input and one output. The scalar mother wavelet

12

w(x)=-xe 2 o which the universal approximation
theorem described in [4, 5] applies. For our
multidimensional node we take the direct product of the
above one-dimension wavelet. The values of learning
rates 71> 72 and 773 were chosen to be equal to 0.25.
The values of the coefficients @t in the objective
function  (6) a1=2, a3 =10, a3 =0
and@4 =10
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Fig. 3 BER comparison of the RWNN, CMA and RRBF
blind equalizers for nonlinear channel

As we can see from Fig. 3 in which we plot the Bit
Error Rate(BER) curves for these three types of blind
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equalizers, the linear CMA equalizer exhibits an almost [5] B. Delyon, et al., “ Accuracy analysis for wavelet
constant high error rate for the range of SNR shown. approximations ” , IEEE Trans. on Neural Networks,
The RWNN blind equalizer succeeds to open the eye- Vol. 6, No. 2, 1995.

pattern in less than 18 iterations for SNR=25dB. The

fast convergence of the RWNN blind equalizer make it

suitable for use in environments where small initial

adaptation delays are desired (such as mobile

communications, cellular telephony).

V. Conclusion

This paper introduced a new blind equalizer based
on a RWNN structure and a novel training approach,
Which is capable of compensating the nonlinear channel
distortion. Since RWNNs essentially model nonlinear
infinite memory filters, they can accurately realize, with
a relatively small number of parameters, the inverse of
finite memory systems and thus compensate effectively
for the nonlinear channel introduced interferences.
Computer simulation results show that small size
RWNN blind equalizer performs much better than the
linear CMA and the RRBF blind equalizers. The small
size and high performance of the RWNN blind equalizer
make it attractive for high speed channel equalization.
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