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ABSTRACT

This paper describes a new neural architecture for un-
supervised learning of a classification of mixed tran-
sient signals. This method is based on neural tech-
niques for blind separation of sources and subspace
methods. The feed-forward neural network dynam-
ically builds and refreshes an acoustic events classi-
fication by detecting novelties, creating and deleting
classes. A self-organization process achieves a class
prototype rotation in order to minimise the statisti-
cal dependence of class activities. Simulated multi-
dimensional signals and mixed acoustic signals in real
noisy environment have been used to test our model.
The results on classification and detection model prop-
erties are encouraging, in spite of structured sound bad
modeling.

1. INTRODUCTION

Contrary to what happens in laboratory conditions,
acoustic signal acquisition in real situations may be
achieved in noisy and varying environments. Noise
modeling by supervised learning assumes noise pre-
dictability. Unfortunately, it is difficult to obtain a sufi-
cient description of all sounds able to disrupt an acous-
tic information processing system, because of large
noise and context variability. Therefore, low a priori
knowledge based techniques provide interesting solu-
tions to this noise unpredictability in complex environ-
ments. That is one of the reason why there has been a
growing interest in unsupervised learning rules over the
past years, especially noticeable in linear and nonlinear
hebbian learning rules for blind separation of sources
(1] 2] [3] [4] [5)-

In this paper, we propose a new neural architecture for
mixed acoustic events classification inspired by neural
methods for source separation and Subspace Classifier

(6 [7).
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2. PRINCIPLE

* Raw signal

* Acoustic vectors
Stimuli

Projection

O

< -
Prototypes evolutions

v

Decorrelation

Figure 1: Principle of neural processing and adaptation
to input signals

We use a feed-forward neural network for acoustic
events detection and classification. Each output cell
1s associated with an event class, and several output
cell activities are considered as simultaneous presence
of events of different classes. The unsupervised neu-
ral classifier self-organizes in order to adapt itself to
environment evolutions. This self organising process
is made on line, by detecting novelties, creating and
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deleting classes. This first data space modeling reduces
input space dimension to a smaller one. A second pro-
cess computes a decorrelation matrix which achieves
prototype rotations in order to minimise the second
order moments of the network output. Decorrelation
operator application on network outputs is equivalent
to a class prototype rotation. So, the computed op-
erator is applied directly to prototype matrix, and the
system stabilizes itself in a state of uncorrelated output
cell activities. The figure 1 shows successives process
applied.

3. ARCHITECTURE

The neural net has two fully inter-connected layers.
The input layer receives the coeflicients of stimuli vec-
tors. The output layer has one cell per class, and an-
other for novelty.

Stimuli

Class 0 Class | Novelty

Figure 2: Architecture of neural network

Each class is represented by a prototype F;(t), an
instantaneous activity and an inertia [;(t). Inertia is
computed from the temporal signal of the cell activity
by a classical alpha-beta filter:

16+ dt) = Bllact(6)] + (1 = B (1)

The choise of the parameter 3 determines the persis-
tency of network memory.

Cell activities are computed by the projection of
stimuhi vectors on prototype space. [t is assumed that
class prototypes are linearly independent, that is im-
plicitly respected in the new class acquisition stage.
The output vector A, is computed at time t by

At = P+(t)Vt

where V/(t} is the stimulus vector, P the prototype ma-
trix (each column of P is a prototype vector), and P*
the pseudoinverse of P.

Consequently, the weight matrix is the pseudoin-
verse of the prototype matrix.

W, = P+(t)
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The novelty cell activity is computed by:

acto(t) = HV(L)II:’—JI/M”

where V.(t) is the component of V(t) inside the pro-
totype space. We do not consider several simultane-
ous class activations as a competition between classes,
with a winner. We rather consider several significa-
tive output cell responses as the simultaneous presence
of different event classes. This is possible only if the
linear mixture of ”physical” events corresponds to the
same linear combination of input vectors. For acoustic
applications, only the additive noise will be correctly
modeled and separated from the useful signal. There-
fore, in such an acoustic context, linear transformation
will be used for converting one-dimensional signal into
input acoustic vectors sequence, such as FFT in sliding
temporal windows.

4. DYNAMIC CLASSIFICATION
LEARNING

The systemn is mitially empty, therefore there are no
known classes. A new class is created when novelty
cell activation exceeds a fixed vigilance threshold, with
the input vector as the new class prototype. The lat-
ter is necessarily linearly independant from the cur-
rent prototype base, because the novelty cell represents
a distance betwen prototype subspace and input vec-
tor. This distance is computed from the input vector
component which is orthogonal to the prototype space.
Low inertia means low class representativeness. So the
system permanently scans class inertias. If one of them
i1s lower than a deletion threshold, then the class will
be killed.

This class integration and deletion on-line process in-
duces a stabilisation of subspace dimension, which de-
pends on the thresholds and the input variability. This
stabilisation is necessary, because the system sensitive-
ness depends from number of class known.

5. PROTOTYPE EVOLUTIONS

In this class acquisition method, the first input vec-
tor is always in the prototype base. In complex en-
vironments, the presence of several events at system
initialisation is likely. In this case, the new prototype
is a mixture of different potential prototype classes. In
such a situation, using only the above described learn-
ing process may lead to bad classification. Here is an
example of a catastrophic scenario:

A.B.C,D are acoustic events, V(t) stimuli vector at
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time t.

t=0; V(0) = A+B; VO=A+B 15 integrated

t=1; V(1)=A+C=V0-B; VI=A+C is integraled; V0
and VI are actives

=8, V(2)=A+B+C+D; V2=A+B+C+D 1is inle-
grated; V0, V1, V2 are aclives

elc..

This shows that the integration and deletion process is
not sufficient for good classification: sufficient inertias
remain for the classes not to be killed (in our example,
prototype VO is always active). The bad position of
the first class prototype will induce bad global classifi-
cation, as well as bad clustering. One consequence of
such a situation will be high class activities correlation.
Therefore, we can assume that different event classes
must be statistically independent.

The synaptic weight evolution rule is based on the min-
imisation of the class statistical dependence. We use
a source separation neural method developed by [4].
This method is able to recover original nonstationary
and statistically independent signals from their linear
mixtures. This neural network has two fully connected
layers. Its transfer function is:

S(t) = (14 C) ' Y(1)

where S is the network output vector, Y the input vec-
tor, and C the network weights matrix. The cost func-
tion is computed from second order morents of output
signals. The originally learning rule is :

T%% = (CT) " «(diag < S(t),5(1)T )" < SOSW)T > —1

The proof of this algorithm convergence, and more
information about it can be found in [4]. This al-
gorithm can only be used for non-stationary signals
separation, and input signals must have zero means
and unity variances. Therefore, cell activities are nor-
malised in order to respect these constraints. The non-
stationary input signals constraint may not to be re-
spected in the case of stationary class activities. There-
fore, we have added a sigmoidal term to the original
learning rule, which allows to regularise learning dy-
namics in locally silent areas. The learning rule used

=2l ()l e
o _(1=e -
with F,, = ) P ”), Fi,=0f i#
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The application of the uncorrelation operator (/!
to classifier outputs is equivalent to a prototype rota-
tion:

Sty = CorWrV () = (W.CHTV (1)

Thus, the operator is applied directly to the prototype
matrix.

6. EXPERIMENTS

In the first test, the first seven alphabet pattern letters
have been randomly mixed. 2000 samples of pattern
mixtures have been used as input, without any infor-
mation concerning original shapes and pattern number.
Seven classes have been effectively found, and original
patterns were recovered with low noise level (figure 3).

Data : 7 randomly mixed events
number of classes and patterns unknown

7 classes found

Figure 3: Detection and clasification of multi-
dimensional simulated events

The second test ( figure 4) shows a signal in a real
subaquatic environment, and system responses. The
first line is the signal spectrogram obtained by a FFT
computed in a sliding temporal window. There is a
vector of 256 coefficients for each 10 ms. The second
line shows the novelty cell activity. New classes are
detected from the local maximums of that curve. The
third line represents the prototype space dimension rel-
atively to the input space dirnension. The other lines
shows most meaningful class activities.

Recurent events have heen well detected. Their first
occurence set off high novelty cell response, and other
occurences of class 3 and class 4 events have been well
classified. At time 350, a class 3 event and a class 4
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event have been occured simultaneously, and the sys-
tern have detected correctly the two events. The fifth
class has been created from the first (and only) isolated
event occurence. The last isolated event has occured a
time 400. It is a noise which have large temporal struc-
ture. These temporal evolutions in large frequency do-
main have produced several classes creation. It has
been badly modeled. That illustrates bad time repre-
sentation in our model.

7. CONCLUSION AND FUTURE
PROSPECTS

The first results concerning model properties for classi-
fication and novelty detection seem to be encouraging,
in spite of the structured sound bad modeling. Using

other source separation techniques based on high or- T | T T I T \
L. . , B0} novelty celt activity ﬂ? }a
der statistics could improve the system’s performances. « ;n Al
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Figure 4: Detection and clasification of acoustic events
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