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ABSTRACT

On-line learning rules for both Principal Component Anal-
ysis (PCA) and Linear Discriminant Analysis (LDA) with
Fisher criterion are analyzed under the same framework,
and a generalized Oja’s rule for both is derived. For the
LDA problem, the relationship between the Fisher crite-
rion and the criterion of minimizing Mean Square Error
(MSE) is discussed. The experiments show that the con-
vergence speed of the generalized Oja’s rule as an adaptive
method for Fisher Criterion is much faster than that of gra-
dient descent method for MSE criterion.

1. INTRODUCTION

PCA (also known as KL Transform) and LDA are both
standard statistical tools for data analysis. PCA focuses on
representation while LDA concentrates on discrimination.
Both have extensive applications in data compression, fea-
ture extraction, pattern recognition, etc. ([1], [2], [5], [6],
{71, [8]), and have been well studied ([1], [2]). Actually, in
spite of the difference, they are quite similar: the closed
form solutions to both problems are the eigenvectors of the
input covariance matrix (for PCA) ([2]) or 2 more complex
matrix (for LDA, known as the generalized eigenvector
problem) ([1]). Oja did pioneering work by relating PCA
with a single layer linear network and providing an on-line
local learning rule, known as Oja’s rule ([4]). Other
researches extended the rule to cover multiple components
(e.g. [5], [6], [9]). However, to the best of our knowledge,
no one has extended Oja’s rule to LDA before. Although
[7] compares PCA and LDA, and proposes a two-layer
PCA network with two step training for LDA, it is actually
the application of PCA to LDA and does not provide
insight into the essence of these two similar problems.
Recently, Chattterjee and Roychowdhury ({10)) indepen-
dently proposed a two-layer linear network for LDA
which uses supervised learning scheme. Although the
algorithm they derived is similar to Oja’s or Sanger’s rule,
the connection between them is not clearly revealed. In
this paper, within the unsupervised learning scheme, a uni-
fied point of view is given under the framework of gradient
descent or ascent learning on related cost functions. Oja’s
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rule is generalized so as to be applicable to both PCA and
LDA problems.

Previous work has shown that an alternate solution (opti-
mal projection) to LDA (Fisher Criterion) can be obtained
by minimizing the MSE criterion when the desired output
is designed in a specific way ({1], [2], [3]). We argue that
the generalized Oja’s rule solution to Fisher criterion and
the gradient method solution to MSE criterion have quite
different properties because the performance surface of
both criteria differs greatly. It is easy to show that the
Fisher criterion actually looks for a line in the data space
while the MSE criterion searches for a point. The equiva-
lence just means that the optimal point of the MSE crite-
rion is located in the optimal line of Fisher criterion.
Intuitively, searching for the position of a line is much eas-
ier than searching for a point. This has been supported by
the results of several experiments where the convergence
speed of the generalized Oja’s rule is much faster because
a larger leaming step size can be selected without produc-
ing divergence in the adaptation.

The implications of this result for pattern recognition are
important. Old arguments state that minimization of the
MSE criterion has no direct relationship to the goal of dis-
crimination between data clusters with arbitrary distribu-
tions. We use it because it is easy to derive on-line leaming
algorithms even for nonlinear networks (i.e. backpropaga-
tion). Comparatively, the Fisher criterion has a more direct
relation to classification, because it provides the best linear
projection for discrimination. But it is not as popular as the
MSE criterion because it requires classes with different
means, and there is no efficient on-line learning algorithm.
In this paper, we do provide an efficient on-line adaptation
rule to implement the Fisher criterion for the two class
case. We also shed light on how the two criteria are
related, in what sense they are different and which one is
better. In the following sections, we will summarize the
major points of our work. The details can be found in [11].

2. Oja’s rule for PCA & LDA

The one component PCA algorithm and the two class

3401



LDA (Fisher criterion) can be described as follows:

PCA: X = (x;,x,, ..., x,) represents a set of data with p
samples, where X; € R" . Without loss of generality, the
data set is assumed to be zero-mean. The problem is to
find a vector w € R" which maximizes (1):
_ w Sw

J = T
ww

(EQ 1)

where w' is the transpose and § = XX' = Zx,-xl-r is
i

the data scatter.

LDA: X) = (Xy1s Xp30 s X1 1 Xy = (X0 Xp veer Xgp.)s
are two sets of data for class 1 and class 2 respectively,

x;€ R .Let m, and m, be the means for X, and X, .
Let m =m -my, X = (X, - mu,, X,— m,yu,) , where

u, = (1’1"‘1)“‘?1 Uy = (1’1"'])1sz . The prob-

lemis to find a vector we R" which minimizes (2):

T T T
7= wTSw - ;vSu;' - wa2 (€Q2)
wSpw wmmw  (wm)

where §p = mm' is the between-class scatter, and

§S=xx"= Zx,.x,.r is the within-class scatter. Note that

the usual Fisher Criterion is the maximization of the
inverse of (2). The reason for using (2) will be clear in the
following.

From (1) and (2), it is obvious that the norm of w: ||wll ,

is irrelevant to both criteria. This implies we can keep

wiw = 1 for (1) and wim = 1 for (2). Another conse-

quence of this fact is that the gradients for both criteria are
always perpendicular to vector w. (3) gives the gradient of
(2) where a factor of 2 is ignored,

1 Yi
I wll’zi:y‘ (x’ T wu’w) (€a9)

VwJ=

If we keep w'w = 1, (3) will become (4) which is the
same as Oja’s rule,
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Aw = Zy,.(x,.—y‘-w) (EQ 4)

Usually ww # 1, so the updating of weights in Oja’s rule
can be decomposed into two components:

Aw=Awt+Aww (EQ5)

where  Aw. =Illwli> Vw/ s the gradient com-

ponent which is perpendicular to w and
Aw, = ((1=1wl?) ZIlwli®) (Y y}w is the compo-

nent which is along the direction of w. Now, let’s intro-
duce the idea of “Base Vector” which serves as the basic
measurement for the problem of concern. For PCA, the
major issue is signal representation. Thus, the base in PCA
is the normalized vector w (llwll = 1). So, yw is just the
projected version of datum x on the Base Vector w and
x—yw is the difference between x and its projected ver-
sion. As Fig. 1 (a) shows, the gradient component in Oja’s
rule forces the projected version of data towards the data
themselves. Fig.1 (b) and (c) show that when {[w] #1,
Oja’s rule has the component A w_ which works as the

negative feedback about the norm of w, forcing |l wil to
be 1. This simply explains why in Oja’s rule w will con-
verge to unit length even without normalization. Unfortu-
nately, when Oja’s rule is applied to the minor component
(the eigenvector with smallest eigenvalue) analysis, the
feedback becomes positive. This is the reason why Oja’s
rule is unstable for minor components. Any modification
to Oja’s rule which keeps the gradient component
unchanged but reverses the sign of the feedback will work

for minor component. [9] gives an example. Actually,

explicit normalization w'w = 1 will also achieve the

same goal.

X-yw X - yw X-yw
X X A X =
—w 5 > - 2 i
Ayw Y e YW sl
(a). liwli=1 (b). lwli>1 (). liwlic1

Figure 1. Nlustration of Oja’s Rule for PCA

Similarly, we can get the gradient for LDA as (6):

1 Yi
- »Z}’; (xi‘m'")

m)°~7
1

Aws= Zy,. (x;-ym)

(EQ6)

Note the similarity of between (6) and (4), where the only
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difference is the substitution on w by m, the mean differ-
ence vector. For classification it is reasonable to use the
mean difference as the basic measurement. Now, unifying
(4) and (6), we get the generalized rule for both PCA and
LDA as (7),

wib=1

where b is the Base Vector whichis w for PCA and m
for LDA. For the major component of PCA, the explicit
normalization w'b = 1 is not necessary. But for both the

minor component algorithm and LDA with Fisher Crite-
rion, the explicit normalization is necessary for stability.

To further explain the generalized rule, (7) can be rewrit-
ten as (8):

Aw= yi[(xi-yiew) +yi(ew_b)]
Z’ (EQB)

where, e,=w/llwll

There are 2 terms, the first one x;—-y,e,, is the difference
between the input sample and its projected version; the
second term e, —b is the difference between the nor-
malized vector ¢, and the base vector b. So, there are
two kind of forces to push the vector w during adaptation.
The first force comes from the zero-mean data, and the
second force comes from the base vector. For the PCA
problem, the second term will disappear because the base
vector is just the normalized vector itself. For the LDA
problem, the base vector is the mean difference. So, in this
case, the data will repel their projected version (gradient
descent) while the mean difference will attract the normal-
ized vector towards itself. Since e, is unit length, a

weighting factor y; is attached to the second term to bal-
ance the contributions.

3. IMPLEMENTATION

Figure 2 shows the network to solve the two-class LDA
problem with Fisher criterion.

It is a linear network with n inputs and a single output.
From (6), the on-line weight adjustment is computed as

Aw = y(x—ym) (EQ9)

From (4), we can see that the structure of the algorithm is
very similar to Oja’s rule. The major difference is the need
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to pre-compute the mean difference vector m between the
data clusters. We also must remember that there is a
required normalization for the weights as shown in (7). So
the algorithm can be described as follows:

(@ ™1

x(2m y
W

x(n) ¥n

Figure 2. Network for 2 class LDA

1. Initialize parameter set w

2. calculate the mean of each of two classes data, make the
data zero-mean with respect to their class means, calcu-
late the mean difference m.

3. get y, = w'm , then normalize w by w = w/ Ym

4. for the input data x; do (batch learning)

T
Yi=wX

Aw = z)’i (x;—y;m)

5. update w by w = w—nAw , where M is the learn-
ing step size.
6. if finish, then exit; otherwise, go to 3.

4. RELATIONSHIP BETWEEN FISHER & MSE

Fig. 3 shows a simple two class classification problem in
2D space. For these two classes the Fisher discriminant is
a line as shown in the figure. The MSE solution using the
desired response as defined in the literature [1], is shown
as a point near the origin of the input space. The optimal
MSE point exists in the Fisher discriminant line.

Although the solutions (the optimal projection) to both cri-
teria are equivalent, their performance surfaces are quite
different, as shown in Fig 3. The MSE performance sur-
face is a paraboloid, while the Fisher surface is a set of two
triangular shaped folds that meet at the origin (the Fisher
surface plot was clipped for better visualization).

Therefore, the two algorithms are expected to have very
different properties. Fig. 4 shows the learning curves for
both methods with different step sizes 1 (vertical axis rep-
resents the angle between the optimal Fisher line and the
current vector, the horizontal axis is the iteration index).
For small step sizes both methods have similar adaptation
speeds. However, for n=0.1 the MSE is divergent, while
the Fisher method is able to find the optimal line in 5 itera-
tions. The MSE never converged faster than the Fisher
method. For n=0.5 both methods diverge. This means that
the Fisher criterion converged one order of magnitude
faster than the MSE for this problem. Similar speed
improvements were obtained for other problems.
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Although the previous research ([1], [2], [3]) has shown
that the solution to the MSE criterion is equivalent to that
of the Fisher criterion for a specific choice of the desired
output, the relationship between the optimal values for the
criteria was never given. In {11], we have proven that there
is a very simple relation shown as (10):

(EQ 10)

where J; and J,, are the optimal values for the Fisher and
MSE criteria respectively, n, is the number of total sam-
ples, n, is the number of samples of class 1, n, is the num-

ber of samples of class 2. Notice that (10) doesn’t depend
on the input data at all.

5. CONCLUSION

The connection for the two class case between the gradient
method and Oja’s rule is established in this paper which
enables the extension of Oja’s rule to LDA with Fisher cri-
terion. For the multiple class case, further extensions have
been made which will be presented in a later paper.
Although the optimal solutions to both Fisher and MSE
criteria for LDA are the same (except for a scale factor),
the gradient adaptation for both criteria are quite different
because of the difference of the performance surface. For
the two-class case, the experiments have shown the effec-
tiveness (faster convergence) of the generalized Oja’s rule
as the adaptation solution to Fisher criterion. We are inves-
tigating the effectiveness of the solution for the multiple
class case.
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Fig. 3: Comparison of Fisher criterion and MSE for a sim-
ple two class problem.
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Fig. 4: Learning curves for the classification problem.
MSE--solid line; Fisher--dashed line.
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