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ABSTRACT

It is widely acknowledged that the effect of
impulsive noise is a major source of performance
degradation within a wide range of communication
systems. This is due to the fact that non-Gaussian
interference is neglected within the system design
philosophy for reasons of complexity and tractability. In
this paper, we directly address this problem using a
novel ‘de-noising’ technique in which significant
performance gains are achieved with low-complexity.

1. INTRODUCTION

The performance evaluation of communication systems
has traditionally relied on the assumption of an
additive Gaussian noise channel. However, in
numerous circumstances this assumption is not always
justifiable and the communication medium can be more
accurately modelled by heavy-tailed, non-Gaussian
distributions. One process which is not adequately
described in terms of the Gaussian assumption is the
process that generates impulsive noise bursts. For
example, noise experienced on radio channels typically
comprises infrequent, high amplitude pulses associated
with  either man-made or natural sources,
superimposed on a more homogeneous (Gaussian)
background. Consequently, the presence of impulsive
noise is a major source of performance degradation
when discrete-time, linear detection schemes such as
the matched filter are used; this is largely due to the
existence of non-Gaussian interference being neglected
in the design philosophy.

A technique commonly used to suppress impulsive
interference involves passing the received data samples
through a memoryless nonlinearity. Typical nonlinear
functions are the hard-limiter and the Gaussian-tailed
nonlinearity. These suppress large excursions from the
wanted signal level by weighting the received data
samples prior to matched filter detection. Although this
approach to noise suppression is not based on any
optimal criteria, it is justified in that an increased
signal-to-noise ratio usually results when a suitable
threshold is chosen. In addition, limiting techniques
incur no excessive computational complexity.

Synthesis of the optimum receiver, based on the
Bayesian theory of signal detection, requires a priori
knowledge of the underlying noise process.
Unfortunately, this information is generally not
available in any realistic application. Furthermore,
impulsive noise is highly dependent on the physical
environment and is also non-stationary. Consequently,
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the process of obtaining an accurate statistical model
proves difficult and renders the optimum solution to the
signal detection problem impossible/unattainable.
Hence, the main objective of this paper is to present a
detector design which is robust in the presence of
impulsive noise, and can be implemented in a low-
complexity real-time architecture.

During recent years, the signal processing
community has developed a renewed interest in the
design of structured bases for the linear expansion of
signals. In particular, the subject of wavelets and time-
scale analysis has received increasing interest as a new
method of expanding functions onto a set of self-similar,
orthonormal basis functions [1]. This is largely due to
the fact that such techniques offer increased flexibility
over more traditional transform methods, combined
with the existence of efficient computational structures,
in the form of multirate filter banks, which allow rapid
calculation of the expansion coefficients.

Recent advances in the application of wavelets
include Donoho and Johnstone’s novel approach to
signal recovery in additive white Gaussian noise
(AWGN) [2]. Here, a simple thresholding technique
involving a ‘keep (shrink) or kill’ policy is applied to the
expansion coefficients. Both hard and soft-thresholding
procedures have been examined which kill the wavelet
coefficients corresponding to AWGN whilst retaining
the larger coefficients corresponding to signal features.
In this paper, we present a novel de-noising technique
which differs from that in [2] by focusing on the
suppression of non-Gaussian, impulsive noise.
Furthermore, when incorporated within a digital radio
receiver, considerable performance gains over a variety
of non-Gaussian radio channels are obtained.

The paper is organised as follows: in Section 2, the
noise model is discussed; in Section 3, the proposed
detector based on a de-noising technique specific to non-
Gaussian interference is explained in detail; in Section
4, simulation results are given; finally, in Section 5,
conclusions are drawn from the work described in this
paper.

Notation: A convenient way of analysing multirate
filter banks is in terms of a time-domain operator.
Here, for example, we have adopted the following
notation; A column vector x of length n is denoted by

x®, while filtering with h,(n), ie{0,1} followed by
iefo,1},

, 1€{0,1} is a matrix of dimension mxn

two-fold subsampling is denoted by H™",

where H™")

whose row entries are even shifted versions of the filter
impulse response h;(n), i<{0,1}. We consider the case
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when the filter coefficients are purely real, and when
the filter bank computes an orthonormal discrete
wavelet transform. Now for a signal containing N =2
samples, the filter bank structure comprises
J=log,(N)-1 stages, and the wavelet expansion

coefficients at the jth level are given by

. . : 1
a(_N/”):H(N/””N/”_I) HH(N/Z"N”'_]) M, j=1,.d,

J 1 0 ’

I=j-1
>l

while the approximation coefficients are computed as

BSlej) _ {IL‘[ H(()N/Z‘, Nf2 ’-‘)

=)

=V, j=1...d.

2. THE NOISE MODEL

The model describing impulsive noise is based on the
expanded noise model in [3]. Here, the background
noise component is described statistically by a zero-
mean, Gaussian random process having variance o2,
while the non-Gaussian, impulsive component is
described by a train of randomly arriving delta
functions whose amplitude is governed by a heavy-
tailed density. Hence, the n'* sample at the receiver
front-end, y(n), can be expressed as

y(r)=x(n)+w(n)+i(n), n

where x(n) is the ntt transmitted sample, w(n) is
AWGN and i(n) is the impulsive noise. Here, all
components of y(n) are assumed to be mutually
uncorrelated. The impulsive noise component i(n) is
modelled as

i(n)=s(r)k(n), (2)

where h(n) is an ever present impulse whose amplitude
is governed by a Laplacian density, and s(@») is a
switching process of ones and zeros. If s(n) is a one

(zero) then an impulse is (is not) present. The switching
mechanism is chosen to be a Poisson random process,
where the mean time of impulse arrival is governed by
the variance 2.

Unless otherwise stated, we will adopt a Laplacian
density having zero-mean and variance 100, while the
mean time of impulse arrival is 30ms.

3. THE PROPOSED DETECTOR

Donoho and Johnstone have recently developed a
powerful noise reduction technique [2] in which they
adopt a thresholding strategy in conjunction with the
discrete wavelet transform. The technique has been
applied successfully to both 1 and 2-dimensional data,
and is proven to be near-optimal for a wide class of
signals corrupted by AWGN. Summarising their
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results, they consider a discretised signal x of length
N, which is corrupted by zero-mean AWGN having
variance o?. Hence, using the matrix notation defined
previously, we can formulate the problem more
explicitly as

¥ = x®™ g w® (3)

where the main objective is to recover the signal vector
x from the noisy observations y. On computing the

wavelet expansion coefficients of y using

J 0 ’

1
) . - I-
o) M) I IH(N“"N/2 )y

j=1,...log,(N)-1, (4)

a ‘keep (shrink) or kill’ policy is then applied to the
individual wavelet coefficients prior to computing the
inverse transform.

Donoho and Johnstone consider two thresholding
strategies; hard-thresholding in which a; is kept if it is

above some threshold T, else it is set to zero, i.e.

(] (]
a(j), |a§)I2T
~ (k &
&l ~T,(a®, 7)- ,
0, |at<r
j=1,..,J, k=1,.,Nf2/; (B)

and soft-thresholding which additionally ‘shrinks’ those
values of a; by T which are not set to zero, i.e.

sle 5] 1) T
& =7fa?, 7)= ,
0, |ag") <T

j=1...dJ, k=1,..,Nf2/. (6)

The threshold T is chosen as T=o,’2 In(N)/ N, where

an estimate of the noise standard deviation is derived
from the wavelet expansion coefficients. Furthermore,
soft-thresholding is usually chosen in favour of its hard-
thresholding counterpart, in order to avoid the
generation of spurious oscillations when computing the
inverse transform.

The de-noising technique presented so far applies
specifically to the problem of signal recovery in AWGN.
However, we are concerned with the design of a low-
complexity receiver, which is robust in the presence of
impulsive noise typically encountered on radio
channels. Hence, the work presented here differs from
that in [2] by considering a thresholding strategy which
operates on large wavelet expansion coefficients,
generated by impulsive phenomena. The advantages of
this method include improved receiver performance in
non-Gaussian conditions, along with robustness to a
wide variety of contaminating densities giving rise to
outliers, and varying degrees of impulsivity.
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We first assume that the detector has a reliable
estimate of the background noise variance o2, which is

derived from a real-time channel evaluation (RTCE)
procedure [4]. Following this, a running estimate is
computed by separating the received data into
Gaussian and impulsive components using a threshold
test, based on the current noise variance estimate. It is
important to remember that this adaptive estimation
process is based on the assumption that the noise is
independent, and that the receiver has a priori
knowledge of the information bearing waveform’s
variance.

The proposed detector, in the first instance, reads in
N =27 gamples, and performs the following test

L e, @

where T is a threshold derived from the estimate of the
background noise variance. If the test fails, no further
action is taken. However, if the test holds, then a
contaminating density giving rise to outliers is present.
The block of received data samples is then transformed
using an orthonormal wavelet basis. Here, the tiling of
the time-frequency plane differs from that induced by
the traditional discrete wavelet transform, by iterating
off the highpass component of the filter bank structure,
i.e. the wavelet expansion coefficients are computed as

J

1
N/29 Nf27,N[251 N/2',Nj2t?

0.( )—H,() ) I IH(l ) y(N),

1=j-1

j>1

j=L..log,(N)-1. (8)

Hence, if we now consider a band-pass signal (whose
normalised frequency lies between zero and 74 ) and a

single Dirac function, then we arrive at the time-
frequency representation shown in Figure 1. The
reasoning behind such an approach is that greater
signal preservation in the time-frequency plane is
achieved when adopting any form of thresholding to
suppress the effects of impulsive noise.

f

Figure 1 Modified Tiling of the Time-Frequency Plane.

Since the energy associated with impulsive noise
will reside in all levels of the decomposition, a
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thresholding procedure is performed across all scales
which ‘shrinks’ excessively large expansion coefficients,
corresponding to impulsive noise, i.e.

sgn(ay'))(‘y 6 {2 In(N)/N), ‘ag") >T
R

a;’,

2

a(j") <T

j=1,..,d, k=1..,N/2/, (9

where y eR*. Hence, corrupted coefficients are simply

replaced by a scaled version of Donoho and Johnstone’s
universal threshold. Selection of the threshold T is
chosen on the grounds that +30, encompasses all but

0.3% of the Gaussian density’s support. Hence, if any
coefficients exceed +3.30,, then it is assumed that a

contaminating density giving rise to outliers is present.

Finally, the inverse transform is computed. On
removing the impulsive component, the preprocessed
gignal is then assumed to be contaminated by AWGN
only. Based on this assumption, the problem of
detection in the impulsive environment is reduced to
detection in a Gaussian environment. Consequently, the
preprocessed signal is demodulated using matched
filter detection.

4. SIMULATION RESULTS

We now test the proposed detector by simply observing
the noise statistics at the input and output of the de-
noising algorithm. Here, we have adopted the Haar
basis as a result of its time-localisation properties;
furthermore, minimal computational complexity is
incurred. Figure 2 contains the probability density
function (pdf) of simulated impulsive noise, where the
background noise level results in Fy{ =104B, while

Figure 3 contains the resulting noise pdf after de-
noising. Overlaid on each of these is the pdf of Gaussian
noise. From Figures 2 and 3, it can be seen that while
the pdf of impulsive noise is heavier in the tails
compared with Gaussian noise, after de-noising the
resulting pdf shows a good fit.
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Figure 2 Simulated pdf of impulsive noise.
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Figure 3 Simulated pdf of impulsive noise after de-
noising.

Figure 4 shows the simulated bit error rate (BER)
performance of 2-PSK in the presence of impulsive
noise. The benefits gained when employing the new
detection procedure, compared with a variety of limiting
schemes, are evident (the deviation from theoretical
performance is due to the increased tail probability of
the noise entering the matched filter). Further results
show that the detector is robust to varying degrees of
impulsivity and underlying noise distributions. In
addition, the curve labelled ‘AWGN Performance of
Proposed Detector’ quantitatively agrees with the
theoretical performance for AWGN over the range of
BER simulated, and demonstrates that there is no loss
in performance in the absence of impulsive noise.
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Figure 4 Comparative Performance Assessment of
Proposed Detector.

5. CONCLUSIONS

A novel de-noising algorithm for suppressing impulsive
noise has been presented. The resulting algorithm
serves as a preprocessing unit to enhance matched
filter performance and is modulation independent. The
algorithm has been incorporated within a digital radio
receiver, and simulation results show that extended
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matched filter performance is possible when the noise
process of the communicating medium is non-Gaussian.,
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