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ABSTRACT

This paper proposes a unifying view of source separation
via the concepts of ‘estimating function’ and ‘estimating
equation’. We exhibit the estimating functions correspond-
ing to varions known techniques like ICA, JADE, infomax,
maximum likelihood, cumulant matching, etc...We also
show how equivariant batch and adaptive algorithms stem
from each particular estimating function and discuss their
stability and asymptotic performance.

1. INTRODUCTION.

1.1. Source separation.

The simplest source separation model is that of an n x 1
vector £ of observations with structure

r=As  r(s)= HT.‘(Si) 1

i=1

where A. is an invertible » X n unknown matrix and s is
an unobserved n x 1 vector. The second equation in (1)
expresses that the probability density function (p.d.f) r(s)
(w.r.t. Lebesgue measure) of the source vector s is the
product of the densities of its components, i.e. that s is
a vector of independent components, the so-called ‘sources’.
The task is to recover the source signals and/or to identify
matrix A. using only the assumption of source indepen-
dence. Only the case of real signals is considered here, but
all the arguments carry over to the complex case.

Many source separation algorithms have been recently
proposed, either adaptive [1, 2, 3, 4, 5, 6, 7] and many oth-
ers, or batch, based on higher order criteria [8, 9, 10, 11]
or on the likelihood [12, 13, 4]. In adaptive (on-line) ap-
proaches, one explicitly updates an n x n ‘separating ma-
trix’ B which yields an ‘output vector’ y = Bz estimating
the source vector s.

I

s— A, z B H»y=Bz=BAs=Cs

C
In many instances, the stationary points of the learning
algorithm may be characterized by an equation in the form

EH(y)=0 with y=Bz (2)
where H : R® — R™*" is an appropriately defined matrix-

valued function. Function H precisely is an estimating func-
tion for source separation; it is the purpose of this contri-
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bution to show how this notion informs most of on-line and
off-line approaches to source separation.

1.2. Estimating functions.

Consider an inference problem where the distribution of a
random variable X € X is parameterized by a parameter
0: X ~ p(z;0), § € © C RP. In this generic parametric
context, an estimating functionis a function A : X x© — RP
such that E¢h(z;8) = 0 for any 8 € ©. If T independent
realizations z(1),...,%(T) of X are available, the unknown

parameter vector # can be estimated as the solution § of
the ‘estimating equation’:

=3 ha(t);8) =0 3)

which is just the sample counterpart of E¢h(z;0) = 0.
The resulting estimates are sometimes called ‘M-estimates’
and have been carefully studied in the statistical litera-
ture [14]. Note that M-estimation generalizes maximum
likelihood estimation since the latter is obtained by taking
h(z;0) = dlog p(z;6)/96.

1.3. Equivariance

In the source separation problem, the unknown parameter
is not an unstructured vector § € RP but an invertible
n X n matrix: § = A € R™*". Thus the parameter set is
the group, traditionally denoted G L(n), of all the invertible
linear transformations on R"™. It is important to take this
fact into account. An estimator of A, which is compatible
with the group structure is said to be equivariant[15]). This

property means that if an estimate Ais computed from a
data set z(1),...,z(T), then the estimate computed from

Mgz(1),..., Mz(T) should be M A for any invertible matrix
M.

It is easy to see that equivariant estimators have the de-
sirable property of having uniform performance: their be-
havior in terms of source separation is independent of the
particular value A, of the mixing matrix [16]. It is also pos-
sible to design equivariant adaptive algorithms [7, 3, 4, 17].
In this paper, we will consider only equivariant estimating
functions, defined in section 2.1..

Outline of the paper

In section 2., we introduce equivariant estimating functions
for source separation and show how they can be derived
by ‘relative differentiation’ of contrast functions. In sec-
tion 3., we show how the theory is extended to source sepa-
ration techniques which are only asymptotically equivalent
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to solving estimating equations. The final section briefly de-
scribes adaptive and batch algorithms to solve estimating
equations.

2. ESTIMATING FUNCTIONS FOR SOURCE
SEPARATION.

2.1. Equivariant estimating functions

The equivariance principle suggests to focus on estimating
functions for source separation having the following special
structure [16]:

h(z;0) = h(z; A) = H(A™'z) = H(y) (4)

where H : R™ — R™*" is a matrix-valued function of a
vector-valued argument. The corresponding estimates A of
Ay are solutions of the estimating equation

e
%E H(y(t)) =0 where y(t) = A z(2). (5)

This is to be related to eq. (2) with the identification of
the mixing matrix B to the inverse of the parameter A.
The condition Egh(z;8) = 0 which is characteristic of an
estimating function in the general case now reads for source
separation: EH(s) = 0. In practice, it will be sufficient to
find H verifying the weaker condition EH(Cs) = 0 for C
a non-mixing matrix, i.e. the components of Cs are the
source signals possibly permuted and scaled.

2.2. Contrast functions and relative gradient

Some source separation techniques are based on the opti-
mization of contrast functions: these are functions c[y] of
the distribution of vector y = Bz taking their extremal val-
ues when B is a separating matrix. Typical instances are
contrast functions measuring the independence of the com-
ponents of y for instance by information-theoretic criteria
or by using cross-cumulants (see below).

Stationary points of a contrast function c[y] are charac-
terized by the cancellation of the gradient of c[y]. For source
separation, it is appropriate to use the relative [7, 17] or nat-
ural [4] gradient of c[y]. This is the n X n matrix denoted
V¢ = Ve[y] such that:

VEER™™ cfy+ Ey] = cfy] + tr {Vc'E} + o(£).

The relative gradient matrix Ve characterizes the first-order
variation of c¢[y] when vector y is modified in y + £y, i.e.
when it is multiplied by I + £.

It is often the case (exemples below) that the relative
gradient of a contrast function c[y] takes the form:

T
Vely] = BHos) or Vely = 73 He(u(t) (6)

for some function H. : R® — R"*", The first form is when
¢[y] depends on the distribution of y; the second form when
it depends on the sample distribution. The point here is
that an estimating function H. is derived from a contrast
function ¢ via relative differentiation. However, it is not
necessarily the case that a valid estimating function derives
from a contrast function.
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2.3. Likelihood and related contrasts

If we believe that the source vector has a differentiable p.d.f.
g(s) = [Ti_, ¢i(s:) and that T iid. samples are available,
it is a simple matter to write down the equation satisfied
by the maximum likelihood (ML) estimator [13]. It turns
out to be an equivariant estimating equation, associated to
the estimating function

Hui(y) = ¢(y)y' — 1 (7)

where [ is the n x n identity matrix and

8(s) = [61(us)s- -, fnlyn)]' ¢.-=-Z—f 1<i<n (8)

This is also the form found in the infomax algorithm [6]
showing that the latter actually is, in the case of source sep-
aration. Actually, any algorithm using non linear-functions
é as in (7) may be seen as a ML solver working under the
assumption of i.i.d. source signals with pdf’s related to ¢
as in eq. (8).

CMA-like criterion Maximizing the likelihood can be
seen as minimizing the Kullback divergence between the
hypothesized distribution of the sources and the empirical
distribution of the output y [18]. One may also try to match
other distributional properties. For instance, if the sources
take only the values £1, the following criterion is of interest:

comaly] = D E(y! - 1)%.

i=1

This is a simple-minded extension to real source separation
of the well known CM criterion for the blind deconvolu-
tion of constant modulus signals. It is easily found to be
associated to the estimating function

Hemaly] = (8° — v)y!

where the i-th component g is y?.

2.4. Orthogonal contrasts

Orthogonal contrasts for source separation are to be op-
timized under the constraint that the output is spatially
white: L ;r=1 y(t)y(t)! = I. They can be implemented
by first whitening the data and then constraining the sep-
arating matrix to be a rotation matrix. They give rise to
estimating functions of a specific form, as shown below.

Orthogonal maximum likelihood Keeping the same
setting as in sec. 2.3., but assuming (thanks to the whiteness
constraint) that the mixing matrix is a rotation, one finds
the estimating function to exist and to be equal to ¢(y)y' —
y¢(y)1. This can be combined with the whiteness condition
to yield the estimating function

HS () = vy’ — T+ ¢(v)y' — wo()! (9)

whose symmetric part expresses the whiteness constraint
and skew-symmetric part expresses the stationarity of the
likelihood under the whiteness constraint. This particular
form also appears in other instances below.

It is important to realize that the estimating function

HY(y) = o(yy' = 1)+ B(6(v)y' —yo(»)")  (10)
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yields the same estimates as (9) if @ and § are two non zero
scalars because the cancellation of a matrix is equivalent to
the cancellation of both its symmetric and skew-symmetric
parts. It follows that numeric factors affecting each of these
parts do not affect the solutions of the estimation equations.
However, they do affect the convergence of the algorithms
which, as those described in section 4., try to solve the
estimating equations by directly using the mean values of
the H functions

Minimum kurtosis. If all the sources have negative kur-
tosis, separation may be achieved by minimizing under the

whiteness constraint the contrast function ) . (;lr\n(4)(y;)

where &Yﬁ(‘)('y;) denotes the sample kurtosis of y;. It is not
difficult to see that the resulting estimate also is the solution
of the estimating equation using the estimating function

Hox(v) =9y’ — T +9°y' —yy®'. (11)

Orthogonal cumulant matching. Denote k; the kur-
tosis of the i-th source and define the matching criteria:

cly] = ) |cum(y,y,) — bl (12)
iy

aly) = Y lcumiyi, v, ve,0) — kbl (13)
ijkl

Note that c2[y] = 0 is equivalent to the whiteness con-
straint, while c4[y] measures the mismatch between all the
(sample) 4th-order cumulants of y and the correspond-
ing cumulants of the sources. Some algebra shows that

if cofy] = 0, then csy] = -,}-E;‘r:l ha(y(t)) + cst where
ha(y) = =23 ._,, kiy!. From this, it is easily found
that the source separation technique minimizing c4[y] un-

der c2[y] = 0 corresponds to an estimating function in the
form (9) with ¢ = ¢4 defined by

¢a(y)i = —kiv; i=1,...,n. (14)

We note that a factor 8 actually appears in the computation
of ¢4 but is discarded in (14), according to the remark of
section 2.4,

3. ASYMPTOTIC ESTIMATING FUNCTIONS.

More sophisticated estimation techniques are not always
ezactly equivalent to solving estimating equations in the
form (5). However, it usually exists an asymptotically
equivalent form in the following sense. For a contrast func-
tion c[y] estimated from T data samples, an asymptotic
estimating function, if it exists, is a function H. such that

T
Vel = 73 He(w(®) + oTH)  (15)

for y = (I + £)s with £ = O(T~%) (this precision of order
O(T']?“) indeed is the expected precision in regular estima-
tion problems). In this case, one can show under standard
regularity assumptions that the estimates obtained by opti-
mizing c[y] and those obtained as solutions of the estimat-

ing equation % Z¢T=1 H (y(t)) = 0 differ only by a term of
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order o(T~%). Hence, the asymptotic behavior of the esti-
mates is essentially governed by the specification of H.. In
the next sections, we exhibit the functions H associated to
known contrasts.

3.1. ICA and JADE
The ICA approach of Comon [9] consists in minimizing

cicaly] = Z |cum(y:, y5, v, y1)|°
iGklstises

under the whiteness constraint. The relative gradient of this
contrast cannot be put in the form EH.(y), but it admits
an asympotic form (15) which, after some calculations, is
found to be: This is asymptotically equivalent to using the
estimating function:

(H@))i; = viys — 85 — kiydy; + kjwiy’. (16)

We can also establish that the joint diagonalization crite-
rion [8]

ciapely] = Z |cum(yi, 3, ve, w1)|°
ijRIFijkk

admits exactly the same asymptotic estimating function.
This is no surprise, since we already know that these two
criteria offer the same asymptotic performance [19]. We
further note that the asymptotic estimating function (16) is
identical to eq. (9) with ¢ defined in eq. (14). We conclude
that, regarding off-line algorithms, identical performance
are obtained using either ICA, JADE or the orthogonal 4th-
order cumulant matching of section 2.4.. However, a fast
optimization technique exists only for the JADE criterion.

3.2. Optimal cumulant matching

Another cumulant matching idea is to precompute the op-
timal weights to apply in matching the cumulants. This is
described in [20] for the case of complex signals. We men-
tion here, still without proof, a similar result for the real
case. Interestingly enough, the optimal weights tend to sim-
ple numerical constants when the source distributions tend
to normality. For nearly Gaussian signals, optimal (in an
asymptotic MSE sense) weighting turns out to be very sim-
ple: the best matching criterion involving 2nd and 4th-order
cumulants is

caaly] = 12¢y] + caly).

The asymptotic estimating equation associated to this con-

trast is
L] *
Ha(y) = 314’24(11)1 -1
where function ¢3, is given by

- ki
$34(9)s = v;5 — 5 (55 - 3y5).

4. SOLVING ESTIMATING EQUATIONS.

4.1. Algorithms

The concept of estimating functions not only provides a
unifying framework by which several source separation ap-
proaches can be compared: it is also straightforward to as-
sociate batch and/or adaptive algorithm to a particular esti-
mating function H(y). An adaptive algorithm for updating
a separating matrix B; upon reception of a new sample z(t)

is: Bit1 = (I — peH(y(t)))B,
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where y(t) = B:z(t) and p. is a sequence of adaptation
steps. Such an algorithm admits as a stationary any matrix
B. such that EH(y) = EH(B.z) = 0. Adaptive algorithms
based on an H function in the form (7) are described in [4];
those based on form (9) are studied in detail in [17].

A batch algorithm for the iterative solution of the esti-
mating equation based on T samples is by setting y(t) =
z(t) for 1 < ¢t < T and then by looping through the two
steps

1 He Ty, H(y(1)
2 y(t) — (I — pH)y(t) fort=1,...,T

4.2. Performance.

The special form (4) of estimating function for source sep-
aration automatically ensures uniform performance of both
the adaptive and batch versions of the algorithms outlined
in the previous section. Here ‘uniform’ means ‘indepen-
dent of the mixing matrix A.’. It follows that the (asymp-
totic} performance can be characterized uniquely in terms
of the distribution of the input and of the estimating func-
tion H(:).

Because of their links with ML estimation, the particular
forms (7) and (9) of estimating functions have already been
studied in some detail. An asymptotic performance anal-
ysis of batch algorithms using estimating functions in the
form (7) can be found in {13]. A similar study for adaptive
algorithms based on form (9) can be found in [17].

CONCLUSION

We have informally presented the general framework of esti-
mating functions for source separation which was shown to
encompass many known techniques. Due to lack of space,
calculations were omitted ans several issues have been left
pending such as the unicity of estimating functions and a
more serious treatment of asymptotic estimating functions.
They will be addresed in a more formal study in prepara-
tion.
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