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ABSTRACT

Recently, a number of classes of multipath channels
which are not blindly identifiable from fractionally spa-
ced samples and second-order cyclic spectra have been
presented. In this paper, we consider the blind iden-
tification problem of these channels using multiple an-
tennas and show that they will not in general give rise
to any common roots among the sub-channels formed
from the antennas, and hence, they can be identified
from second-order statistics.

1. INTRODUCTION

Several recent methods on blind channel identification
and equalization [1, 2, 3, 4, 5, 6] rely on a system
model with multiple sub-channels driven by a single
input. These methods depend on a condition that no
common root exists among the sub-channel polynomi-
als. In a recent letter, Ding [7] has pointed out sev-
eral classes of multipath channels which are not iden-
_tifiable from second-order cyclic spectra (SOCS). Most
of these channels are band-limited (however the band-
limitedness property is not needed for the class of chan-
nels with delays equal to integer multiples of the sym-
bol period). In arriving at the non-identifiability of
these channels, Ding has assumed the sub-channels to
arise from oversampling the output of a single sensor.
We may also point out that although the band-limited
channels are strictly unidentifiable from SOCS [8], sev-
eral algorithms are recently proposed to identify these
channels by estimating their finite duration impulse re-
sponse approximations.

In this paper, we show that the classes of multipath
channels [7] can be identified from second-order statis-
tics (SOS) using multiple antennas. In particular, we
show that the sub-channels formed from multiple an-
tennas will not share any common root; if a common
root arises, it can be eliminated by synchronized sym-
bol rate sampling or oversampling.
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2. BACKGROUND

Under a standard model for a linear digital modula-
tion over a linear intersymbol interference channel, the
received baseband signal at the receiver is represented

as
y(t) =) _arh(t — kT) + o(t) (1)
k

where ay’s are the transmitted symbols, T is the symbol
period, h(t) is the composite impulse response of the
multipath channel and transmitter and receiver filters,
and v(t) is the additive channel noise which is assumed
to be independent of ax’s. We assume that h(t) has a
finite duration.

2.1. Oversampling a single sensor output

Let the sampling interval be T, = T/P where P is
an integer. Define y;(k) = y(t)|s=to4x7+(i-1)7/P and
similarly h;(k). We can then write

L
(k) =Y ax—thill) + vi(k) (2)
=0

where L is an integer such that h;(I) =0for{ > L +1
and for { < 0 for 7 = 1,2,..., P and h;(0) # 0 and
hi(L) #£ 0 for some i € {1,2,..., P}.

2.2. Outputs of multiple sensors

We now assume an array of M sensors. With some
abuse of notation, let y;(t) and h;(t) denote the com-
plex envelope of the signal received at the output of i-th
sensor and the composite baseband impulse response of
the channel from the transmitter to the output of i-th
sensor, respectively. Then

wi(t) = 3 awhit - KT) + ui(t) 3)
k

Assuming symbol rate sampling, we obtain the same
expression as (2) for y; (k).
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2.3. Blind identifiability
Let H;( E, ~0
H(z) = [Hi(2) Ha(2) ... Hp(2)]" (4)

h;(1)z~". The vector channel

is identifiable up to a unitary scalar factor from the
SOCS if and only if there is no complex p such that
Hi(p) =0V i € {l,...,P} (see[9]) (for the case of

multiple sensors, P should be replaced by M). An-

alternative statement of this common root condition is
as follows. Consider the PL-length filter

P

Z DOV H (P (5)

obtained by interleaving the impulse responses h;(k),i =
1,2,...,P. In (5), we have used z; instead of z so as
to emphasize that the coefficients of H(z,) are spaced
at T/ P seconds apart while those of H;(z) are spaced
at T seconds. Then, the condition that {H;(z)} have
a common root, say p, is equivalent to the condition
that H(z1) has a set of P zeros located symmetrically
around a circle of radius |p|!/? with origin as its center
[9], which is the original form in which the common-
roots condition was presented in [2].

One can use either of these conditions to examine
the identifiability of the channels.

3. IDENTIFIABILITY OF CERTAIN
MULTIPATH CHANNELS

Let c(t) denote the continuous-time impulse response
of a multipath channel (excluding that of transmit-
ter and receiver ﬁlters). We can then express c(t) as

Eq—O aq 6(t — 1) where a4 and 7, are the fad-
1ng coefﬁment and the propagation delay, respectively,
of g-th path, @ is the number of multipaths and 4(-)
is the Dirac delta function. Let g(t) denote the ef-
fective continuous-time pulse shape which includes the
effects of the transmitting and receiving filters. Then,
the composite impulse response of the channel, h(t), is
given by h(t) = ¢(t) x g(t) where x denotes convolution.
We assume that g(t) has a finite duration.

3.1. Multipath channels with delays equal to in-
teger multiples of T' (Class I)

These channels are described by

Q-1
c(t) = Z ag 6(t — ¢T) (6)

q=0

It is shown in [9] that these channels give rise to com-
mon roots among the sub-channel polynomials obtained
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by oversampling, and hence, are not identifiable from
SOCS (in [7], these channels are classified as Class I
channels). We may point out here that though these
channels are presented as band-limited channels, the
band-limited assumption is not necessary for their non-
identifiability as is required for other classes of channels
described in [7].

We now consider the sub-channels that we obtain
from M sensors. We assume that these sensors are
omuni-directional and they form a uniform linear array
(this assumption is made for convenience of exposition
only and the following conclusions hold for arbitrary
arrays as well). Assuming that the @ paths impinge
the array from angles g, 61, ...,0g-1 (measured with
respect to the broadside direction of the array), the
baseband equivalent impulse response of the channel
between the transmitter and the output of i-th sensor,
under the narrowband assumption of the transmitted
signal, is given by

2xd

Z =0 Olqe-JT(’ Lsin b, J(t—qT)) *9(t)
Zq:o C!qt‘z-Jlr_('—l)sin 0qg(t—qT))

i

hi(t)

(7)
where d is the inter-element spacing and A is the wave-
length of the carrier frequency. The symbol-rate sam-
pled response of the i-th sub-channel is then given by

Q-1
= Z "hqg(k - q)7
q=0

where h;(k) = hi(t)|i=to+4T and g(k)
Taking the z-transform, we get

Yig = aqe—j-?{-‘i(i—l)sian (8)

= g(t)le=to+kT-

Q-1

> vg 279G(2) 9)

q=0

H;(z) =

Note the difference between the characterization of
i-th sub-channel obtained by oversampling [9] and that
of (9). In the multiple sensors case, the common factor
among the sub-channels comes from the pulse shape
while in the oversampling case it comes from the mul-
tipath channel (see [9]). We now show how the com-
mon factor G(z) can be eliminated by choosing a suit-
able pulse shape and synchronized symbol-rate sam-
pling (or by using oversampling), thereby allowing the
sub-channels to be identifiable from SOS. Let g(t) be
a Nyquist pulse (e.g. a pulse with raised cosine spec-
trum). This pulse has zero value at t = +k7T for k # 0.
If the sampling of y;(t) is synchronized with the sym-
bol timing, i.e., tp = 0, then g(k) = 1 for ¥ = 0 and
g(k) = 0 for & # 0. This gives G(z) = 1, and conse-
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quently, the sub-channe] transfer function becomes

Q-1
Hi(z) = Z "y,-qz'q (10)
q=0

Equation (10), combined with the definition of v;4 (see

(8)), shows that the M sub-channels will have no com-
mon roots as long as the arrival angles of the  mul-
tipaths are not the same or they do not correspond to
array ambiguities.

Now suppose that synchronized symbol rate sam-
pling is not possible, and instead, we oversample h;(t)
by a factor P. We will then have

Q-1
hip(k) = Z 7iqu(k - Q)’ p= 1723 7P (11)
g=0

where h,'p(k) = hi(t)|t=t0+kT+(p-1)T/P and gp(k) =
9(t)|e=to+kT+(p-1)T/P- The corresponding z-transfer
function is given by

Q-1 Q-1
Hip(z) = D %ig Gpl2)277 = Gp(2) D %igz™% (12)
q=0

g=0

Note that {Gp(2)} do not share in general any common
factor since they correspond to z-transforms of the se-
quences derived from different parts of the pulse shape,
and the coefficients of the polynomial (second term in
(12)) vary with antenna index i as long as the multi-
path angles are not same or they do not correspond
to array ambiguities. We may also remark here that
according to (12), for a fixed p we get a group of com-
mon roots among {H;p(z)}, but these roots are not
in general shared among the different p’s. Thus, the
M P sub-channel polynomials do not share any com-
mon root, and hence, the vector channel

H(z) = [Hi1(2) ... Hip(2) ... Hyi(2) ... Hyp(2)]T
can be identified from SOS.

3.2. Multipath channels with frequency nulls
(Class II)

In (7], Ding shows that multipath channels with fre-
quency nulls in [~7(1 — 8)/T, (1 — B)/T), where 3 is
the rolloff parameter, are not identifiable from SOCS.
In particular, he shows that each frequency null in
[-7m(1-B)/T, n(1—B)/T) gives rise to a set of P roots
in the oversampled response that are located uniformly
around the unit circle. In arriving at this result, he im-
plicitly assumes the overall channel frequency response
(including that of transmitter and receiver filters) to be
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band-limited to [~m(1+ 8)/T, =(1+ 8)/T]; this band-
limitedness property is used in order to pick P—1 unit
circle roots from the stop-band region of the composite
channel response. Here, we show that for such multi-
path channels, the sub-channels formed from M sensors
will not suffer from common roots.

Consider the class of multipath channels with two
paths [7]

c(t) =46(t) + é(t_(l—z‘nj)’ n>p (13)

which has a frequency null at w = Z IT— L oorw =

—_l(ql.;"l. Now consider the sub-channels obtained from
the M sensors of a uniform linear array. Following the
steps similar to those used in arriving at (7), we obtain
the impulse response of the i-th sub-channel as

hi(t) = e1%* (= Nsindo (g(2) 4 g(t — 1) x

% e—J B (i-1)(sin 61 —sin Gu)) , T=T/(1—n) (14)
where 8y and 6, are the arrival angles of the direct and
reflected paths, respectively. The symbol-rate sampled
version of h;(t) can then be expressed as

hi(k) = ed%A=Duinbo (g(k) 4 yiq,(K)),
v = e—J B2 (i—1)(sin 61 —sin 8o)
(15)
where g, (k) = g(t—7)|t=¢,+47- Taking the z-transform,
we have

Hi(z) = e 3206-18in00 ((2) 4+ 4,G.(2))  (16)

Observe that there is no common polynomial factor
shared by the sub-chapnels. For 7 = kT, however,
G,(z) = G(2)z7* and it corresponds to a special case
of the Class I channels.

To get more insight into the unit circle roots among
{Hi(2)}, consider the following. Let H(w) denote the
Fourier transform of k(t), and similarly G(w), where w
is the analog radian frequency. The frequency response
of the lowpass equivalent of the i-th sub-channel can be
shown to be

Hi(w) = (e—jz-}i(i—l)sin 60 o= 24 (i=1)sin ) i i ) G(w)

(17)
Since G(w) is non-zero for w € (—w(1+ 8)/T, (1 +
B3)/T) (assuming a raised cosine pulse shape), the fre-
quency null of Hi(w) in [-n(1 — B)/T, =(1 — B)/T},
contributed by the term in the brackets, is different for
each . We may remark here that if we oversample h;(t)
of (14) by a factor P, {H;,(z)} will contain a common
unit circle root V¢, but that root is not shared among
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Common roots of the 4
polynomials (p = 2)

Common roots of the 4
polynomials (p = 1)

—1.8497

6.0956 £ 1.02067
0.0493 + 3.7032;
—0.1196 + 0.2861;
0.1983 + 0.1476;

—0.6836

3.1926 £ 2.2354;
—0.9604 + 2.9235;
—0.0157 + 0.29367
0.1832 £+ 0.0794;

Table 1: Numerical results

different ’s as long as the multipath angles are not
same or they do not correspond to array ambiguities.
We arrive at similar conclusions in respect of the other
classes described in [7].

Thus, the classes of multipath channels discussed
above do not suffer from identifiability based on SOS
if we use multiple antennas in place of oversampling.

4. NUMERICAL EXAMPLES

We consider a 2-path model for a channel under Class
I with 8 = 0°, 6; = 30°, oy = 1, @2 = 0.5, and
a raised cosine pulse with § = 0.3. The two paths
are separated by one symbol period T in time. We
assumed the pulse to be limited to +5 baud inter-
vals. Note that oversampling in this case will result
in a common root, making the channel non-identifiable
from SOCS. We consider a uniform linear array with
M = 4 and d/A = 0.5. In the case of zero offset
(to = 0), Hi(z) = 14 0.5 e~9m-1/2;=1 " Fach of
these polynomials has a single root equal to —0.5, 0.5,
0.5 and —0.5j, respectively, resulting in no common
roots, thereby making SOS-based identifiability possi-
ble. We then choose a non-zero offset to = 0.27. Now,
the degree of each sub-channel polynomial is ten. As
predicted by {9}, the four polynomials have nine com-
mon roots and the 4 roots mentioned above will be dis-
tributed (one each) among these polynomials to form
the tenth root. If we consider oversampling with P = 2
{see (12)), the four polynomials corresponding to p = 2
will share again nine common roots which are, however,
different from those corresponding to p = 1, as shown
in the following table. Once again, the 4 roots men-
tioned above will be distributed (one each) among the
4 polynomials corresponding to Vi. Thus, these results
corroborate our predictions.

Copyright 1997 |IEEE

5. CONCLUSIONS

In this paper, we have considered the classes of multi-
path channels [7] that are shown to be unidentifiable
from SOCS . Using multiple antennas and oversam-
pling (or synchronized symbol rate sampling), we have
shown that the sub-channels so obtained do not suffer
from common roots, and hence, these multipath chan-
nels can be identified from SOS.
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