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ABSTRACT

We present a new two-step approach to blind beamform-
ing based on the least squares criterion. The first step consists
of “whitening” the array received vector, i.e., transforming its
response matrix to some unknown unitary matrix. The sec-
ond step consists of estimating the unitary matrix from the
fourth order cumulants by a least squares criterion. In con-
trast to the corresponding “joint diagonalization” step of the
JADE algorithm, our second step exploits all the structural
information in the problem and consequently yields better
performance. Simulation results demonstrating the improved
performance over the JADE algorithm are included.

I. INTRODUCTION

Blind beamforming is aimed at estimating the array di-
rectional response matrix without a priori knowledge of the
array manifold. Many different schemes have been recently
proposed for this task, see [1]-[9] and the references therein.

An efficient two-step scheme, referred to as Joint Approx-
imate Diagonalization of Eigenmatrices (JADE), was pro-
posed by Cardoso and Souloumiac [1]. Their first step consists
of “whitening” the array received vector, i.e., transforming its
response matrix to some unknown unitary matrix. Their sec-
ond step consists of estimating the unitary matrix by “joint
diagonalization” of the whole set of fourth order cumulant
matrices of the whitened process. Though the JADE crite-
rion was based solely on intuitive grounds, it was shown in
{10] that this criterion is in fact the least squares solution
to the joint diagonalization problem, with certain structural
information on the diagonal matrices being ignored.

In this paper we present a new least squares criterion to
the estimation of the unitary matrix. In contrast to the JADE
criterion, this criterion exploits all the structural information
in the problem and consequently yields better performance.
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II. PROBLEM FORMULATION

Consider an array composed of p sensors with arbitrary
locations and arbitrary directional characteristics. Assume
that ¢ narrowband sources, centered around a known fre-
quency impinge on the array from distinct directions.

Using complex envelope representation, the p x 1 vector
received by the array can be expressed by

x(t) = 3 acsi(t) + n(t), (1)

i=1

where a; is the p x 1 response vector to the i-th source, s,(t)

is the signal of the i-th source as received at the reference

point, and n(¢) is the p x 1 vector of the noise at the sensors.
In matrix notation this becomes

x(t) = As(t) + n(t), (2)
where A is the p X ¢ matrix
A=[ay,...,a). 3)

Suppose we are given M samples of the array vector
{x(t:)}¥,. The blind beamforming problem amounts to es-
timating the the array response matrix A from the sampled
data {x(;)}M,.

To solve this problem we assume the following:

A1l : The matriz A is full column rank.
A2 : The signals {s;(t)} are statistically independent with

zero mean and covariance matriz I.

A3 : The noise {n(t;)} are Gaussian random vectors, ind-
pendent of the signals and independent of each other with
zero mean and covariance matriz o°L

Suppose also that we have “whitened” the array response
matrix, that is performed the transformation

z(t) = Wx(t), (4)
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where W is a ¢ X p whitening matrix satisfying
WA =1, (5)

with U denoting an unknown ¢ X ¢ unitary matrix.
The resulting g X 1 vector z(t) can be expressed as

z(t) = Us(t) + i(t), (6)

where fi(t) = Wn(t), being a linear transformation of a Gaus-
sian vector, is also Gaussian.

Now, let C denote the g% x ¢? matrix built from the
fourth-order cumulants of z(t),

C = cum [(z‘(t) X z(t)) (z‘(t) X z(t)) "] TS

where 0 denotes the Kroneker product and * denotes the

complex conjugate.
From (6), using the well-known properties of cumulants,

we get

C=3"(uf @ uiki(u; @ ui)¥, ®)

i=1

where k; is the kurtosis of the i-th element of s;(t), given by
ki = cum(si(t), s (t), s:(t), s (2))- (9)
This may be written as
C =UKU”, (10)
where U is the g% x q matrix
U=[..., 0 =0 @u,...,u;Qul, (1)

with u; denoting the i-th column of U, and K is the ¢ x ¢
diagonal matrix

K = diag(ky,. .. kq). (12)

Let € denote the sample-estimate of C obtained from a
finite batch of M samples {z(;)},. The problem we address
in this paper can be stated as follows. Given C, estimate the
unitary matrix U.
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III. THE LEAST SQUARES SOLUTION

Least Squares is a natural and common estimation cri-
terion. In the problem at hand this criterion amounts to the
minimization of the Frobenius norm of the difference between
sample-cumulant matrix € and the true-cumulant matrix C,
given by (10}, i.e.,

win || C - UKU™ |I7.. (13)

Comparing this criterion with the least squares crite-
rion for the joint diagonalization problem, [10], it should be
pointed out that while the latter ignores the dependence of
the elements of the diagonal matrices on the elements of the
matrix U, our new criterion fully exploits all the structural
information in the problem and hence yields a better fit to
sample-cumulant data C.

To derive the least squares estimator of U we first min-

imize (13) with respect to the diagonal matrix K, with the
matrix U held fixed,

g9
min || € - OKU7 ||3= min 1€ kwalf 2. (14)
¢ i=1

Now, using the vectorizing operator, vec(-), the minimization
turns into the following standard least squares problem

min | vec(C) — Hk |?, (15)
where H is the ¢ x ¢ matrix
H= [vec(ﬁlii{’), s ,vec(ﬁ,,iif)] , (16)
and k is the ¢ x 1 vector
k= [ki,..., k% (17)
The solution is given by the well-known expression
k= (H7H) ™ H¥vec(C), (18)

which when substituted into (15) and then into (13) yields
the following estimation criterion

U = argmax || H (H"H) T HAvec(C) 2. (19)
Exploiting the readily provable relation
HIH =1, (20)

we get
U= arg max || H¥vec(C) |2 . (21)
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Now from (16), using the well known properties of Kroneker
products, we get

q
| B vee(C) =3 || & Ca I, (22)
i=1
which when substituted into (21} yields

q
U= a.rgmg.xg (ﬁf’éﬁi)z . (23)

To simplify this expression, let Ay > A3 2,...,> Ag and
V1,Vy,..., Vg denote the eigenvalues and theﬂcorresponding
eigenvectors of the sample-cumulants matrix C,

q2
C= Z/\jvjvf. (24)
i=1

Substituting this expression into (23), we get
g [ 2
F SH o n2
U =argmgx; (]Z::lf\j | a;"v; | ) ' (25)
Now, using (11), we get
il v; = (u} @) u)Fvec(V;) = wiVju, (26)

where V is the ¢ x g matrix formed from the ¢* x 1 vector
v; by the unvec(-) operation.
Substiuting (26) into (25), we finally get

Oy | ufviu B2 (@)

Ma

U= argmgxz

i=] j=1

This criterion should be compared with the JADE cri-
terion of Cardoso and Souloumaic, [1], which can be written

as
@ q

3 2 wHV.u 12

U= argmgx;z::“ﬂ | uf Vius |I* (28)
Notice that though both criteria are expressed in terms
of the quadratic forms {uf V;u;}, the two criteria are func-
tionally different. In this respect, notice that {);}, being
the eigenvalues of an Hermitian but not necessarily positive

" definite matrix, are real but not necessarily positive.
it follows from (10) that asymptotically, as the num-
ber of samples grows to infinity, A; — k;;5 = 1...,¢ and
Aj—=0i=g+1... ,¢%. This implies that the q? - q “small”
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eigenvalues of C are essentially “noise” and thus their contri-
bution to (27) can be neglected without imparing significantly
the estimation accuracy. Making this simplifying approxima-
tion, the estimation criterion reduces to

9 q

3 2
U=agmaxd > (4l ufvu?)’  (29)

i=1 j=1

This should be compared with the corresponding version
of the JADE criterion, given by

“ q q
U=argmax 33 P el Vw2, (30)

i=1 j=1

IV. SIMULATION RESULTS

To demonstrate the performance of the proposed algorithm
we comared it with the JADE algorithm in several simulated
experiments.

In these experiments four uncorrelated sources impinged
from directions —26°,0°, 26, and 51° on a 5 element uni-
form linear array with inter-element spacing of 0.4). In each
experiment the Signal-to-Noise Ratio (SNR) was fixed while
the number of samples M was a parameter. For each value
of M we performed 100 Monte Carlo runs and computed the
Signal-to-Interference-plus- Noise Ratio (SINR) of the sources
at the beamformer output.

For comparison, the estimation of the unitary matrix was
carried using the two versions of the prposed solution, i.e., the
full version (27) and the simplified version (29), as well as the
corresponding versions of the JADE algorithm, i.e., (28) and
(30). The SINR results obtained by the proposed solution are
presented by solid lines while those obtained by the JADE
algorithm are presented by dashed lines. The upper line in
each pair represents the full algorithm while the lower line
represents the simplified algorithm.

In the first experiment the sources were FM modulated
with SNR of 10dB, 15dB, 20dB and 5dB, respectively. The
results corresponding to the source at 26° are presented in
Figure 1. Notice that the performance gain between the full
versions increased in this case to more than 5dB at M = 20.

The scenario in the second experiment was identical to
the first except that the sources were QAM16 modulated.
The results corresponding to the source at boresight are pre-
sented in Figure 2. Notice that the performance gain be-
tween the full versions varies from 4dB at M = 40 to 2dB at
M = 100. Also, notice that in contrast to the FM modulated
signals in the third experiment, the QAM16 signals require
more samples for the same performance level.
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Figure 1: Four equipower uncorrelated sources impinge from
directions —26°,0°, 26°, and 51° on a 5 element uniform linear
array with inter-element spacing of 0.4A. The signals are
FM modulated with SNR of 10dB, 15dB, 20dB and 5dB.
The figure presents the SINR of the source at 26°. The two
solid lines represent the full and the simplified versions of the
proposed algorithm, while the two dashed lines represent the
corresponding versions of the JADE algorithm.

—
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Figure 2: The scenario is identical to that in Figure 1 except

“that the modulation of the signals is QAM16. The figure
presents the SINR of the source at boresight.
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V. CONCLUDING REMARKS

We have presented a new approach to blind identification of
the array response matrix. The approach is based on two
steps. The first step consists of “whitening” the array re-
ceived vector, i.e., transforming its response matrix to some
unknown unitary matrix. The second step consists of esti-
mating the unitary matrix from the fourth-order cumulants
by a least squares criterion. While the first step is identical
to that performed in the JADE algorithm, the second step
differs from the corresponding “joint diagonalization” step of
the JADE algorithm in that it fully exploits all the structural
information in the cumulant matrix. The performance gain
over the JADE algorithm was demonstrated by simulations,
and was shown to be especially conspicuous when the number
of samples is small.
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