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ABSTRACT

Adaptive algorithms require a good estimate of the inter-
ference covariance matrix. In situations with limited sam-
ple support such an estimate is not available unless there is
structure to be exploited. In applications such as space-time
adaptive processing (STAP) the underlying covariance ma-
trix is structured (e.g., block Toeplitz), and it is possible
to exploit this structure to arrive at improved covariance
estimates. Several structured covariance estimators have
been proposed for this purpose. The efficacy of several of
these are analyzed in this paper in the context of a vari-
ety of STAP algorithms. The SINR losses resulting from
the different methods are compared. An example illustrat-
ing the superior performance resulting from a new max-
imum likelihood algorithm (based upon the expectation-
maximization algorithm) is demonstrated using simulation
and experimental data.

1. INTRODUCTION

The presence of ground clutter can seriously degrade the
detection performance of airborne surveillance radars be-
cause the clutter energy may exist in all angular directions
and doppler bins. Because the precise structure and loca-
tion of clutter interference is not known a priori, adaptive
nulling methods, especially space-time adaptive processing
(STAP), are used to mitigate its effects.

Such adaptive processing methods require knowledge
of the interference covariance matrix. If this covariance
matrix is not known, it must be estimated in some way.
Typically, the sample covariance matrix is used as the es-
timate of the covariance. However, in situations with in-
sufficient sample support, this estimate yields poor detec-
tion performance [8]. This problem motivates the consid-
eration of structured covariance estimation procedures in
which improved adaptive processing performance may be
achieved [6, 5, 9, 4]. This is the situation for STAP, where
the clutter covariance matrix is modeled as having block
Toeplitz or Toeplitz block Toeplitz structure {12, 10], de-
pending on prior knowledge of the array geometry. The
subject of this paper is to analyze the efficacy of a variety
of structured covariance estimation techniques for STAP,
including a new maximum likelihood (ML) algorithm.

This work was sponsored by DARPA under Air Force contract
F19628-95-C-0002. Opinions, interpretations, conclusions, and
recommendations are those of the authors and are not necessarily
endorsed by the United States Air Force.
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2. COVARIANCE MATRIX ESTIMATORS

2.1. Sample Covariance Matrix Estimator

The sample covariance matrix is usually used as an esti-
mate of the true interference covariance matrix in STAP
algorithms. This approach is reasonable because the sam-
ple covariance matrix is easy to compute and is the uncon-
strained ML estimate under a Gaussian data model. How-
ever, this method yields a poor estimate with insufficient
sample support. Diagonal loading is a common technique
used to improve performance in this scenario; however, this
method is not effective against lower power yet significant
interference sources. Furthermore, neither method incorpo-
rates constraints that arise from consideration of the phys-
ical phenomena that generate clutter data.

2.2. ML Structured Covariance Estimator

In most ML structured covariance estimation problems no
closed-form solution is known; this is true for covariance
matrices with generic block Toeplitz or Toeplitz block Toep-
litz structure. It is this difficulty that leads one to an iter-
ative numeric technique for ML estimation.

Structured covariance estimation is considered in its full
generality by Burg et al. [2], who propose an iterative algo-
rithm for ML structured covariance matrix estimation based
upon the idea of driving the derivative of the log-likelihood
function to zero. Alternatively, the iterative expectation-
maximization (EM) algorithm of Dempster et al. [3] has
been used to generate ML structured covariance matrix esti-
mates [6, 5, 9, 4]. The attractive properties of the EM-based
ML algorithm include: (1) the sequence of covariance esti-
mates are non-decreasing in likelihood; (2) the constraints
imposed on the covariance estimates are easily incorporated
into the estimation procedure; (3) the procedure reduces
to a sequence of simple matrix operations. Unfortunately,
because of its iterative nature, the EM algorithm for struc-
tured covariance estimation is computationally intensive.

An EM algorithm for generating block Toeplitz and
Toeplitz block Toeplitz covariance matrix estimates derived
by Fuhrmann and Barton [5] is summarized by the following
sequence:

Skt = B(Zk + SRAR; (S - Re)RTASL), (1)
Riy1 = AZe A", (2)

where R is the structured covariance estimate, S is the
sample covariance matrix, and B(:) denotes the block di-
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agonal part. The sequence is initiated by providing a pos-
itive definite guess for ¢ (say o = I), then taking Ro =
AXpA". For the case of block Toeplitz covariance matrices
of order MN-by-M N (M? blocks each of order N),

A = ([Im, Opx(p-a)]Wp) ®In, (3)

where Wp is the P-by-P (P > M) normalized discrete
Fourier transform matrix. The use of this EM algorithm im-
poses the additional constraint that the estimated M N-by-
M N block Toeplitz covariance matrix has nonnegative def-
inite block circulant extensions of size P.

For the case of Toeplitz block Toeplitz covariance ma-
trices of order MN-by-MN (M? blocks each Toeplitz of
order N)

A= ([IM, OMx(p_M)]WP) ® ([IN, ONx(Q—N)]WQ)a (4)

where P > M and Q > N.

Given the EM iteration sequence of Egs. (1) and (2), the
number of computations incurred when estimating an ML
block Toeplitz structured covariance matrix is significantly
increased over that incurred in generating the unstructured
sample covariance matrix. However, the ML structured co-
variance matrix estimates result in improved performance
of STAP algorithms.

For the case of block Toeplitz and Toeplitz block Toep-
litz covariance structure, these issues lead one to consider
fast non-ML structured covariance estimation procedures,
two of which are discussed in the following sections.

2.3. Projected Covariance Estimators

Projection offers one simple method of estimating struc-
tured covariance matrices. This idea comes from the fact
that for any vector space with an inner product, there exists
a unique orthogonal projection onto a given subspace. Here
the covariance matrices are viewed as the vector space of
Hermitian matrices, and the subspace is viewed as the sub-
space of structured Hermitian matrices. Looking ahead, we
forecast difficulties with this approach because its assump-
tions are invalid: the covariance matrices do not have a
vector space structure. We shall nevertheless describe and
analyze this method because it is an obvious procedure and
because its deficiencies will be improved somewhat in sec-
tion 2.4.

Given two Hermitian matrices A and B, there is a nat-
ural inner product between A and B defined by:

(A,B) = tr AB. (5)

The square length of A is written ||JA||> = (A, A) (ie., the
Frobenius norm). Let S be an n-dimensional subspace of
the Hermitian matrices, and E; (i = 1, ..., n) be an or-
thonormal basis of S, i.e., (Ei, E;) = &;; (Kronecker delta).
For example, if S is the vector space of Hermitian Toeplitz
matrices, then we may take E; = toeplitz(1,0,...,0)//n,
E2 = toeplitz(0,1,0,...,0)/1/2(n — 1), and so on (using
Moler’s Matlab notation). The unique orthogonal projec-
tion of an arbitrary Hermitian matrix A = (A;;) onto S
is defined to be the vector Z'. o;B; such that the square
length || 3, &iE; — Al|? is minimized over all a;. This re-
sults in the projection

TM(A) =) | (B, A)E:. (6)
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For the Hermitian Toeplitz example, this projection results
in the formulae

An+Ax+---+ A,

diagonal of TI(A) = ~ o D
off-diagonal of II{A) = At A23n+ . 1 tAn-1n , (8)

and so on. That is, take the mean down diagonals. The
projection for block Toeplitz and Toeplitz block Toeplitz
matrices is similar: simply take the mean down diagonals
and block diagonals.

The problem with this method is that there is no guar-
antee that II(A) will be positive definite; in fact, it is very
easy to generate examples where II(A) fails to be a co-
variance matrix. Furthermore, our purpose for estimat-
ing structured covariance matrices is to construct adaptive
weight vectors that null interference. There is no guarantee
that TI(A) will result in adaptive weights that sufficiently
null the interference, especially in sample limited scenarios.

2.4. Weighted Projected Covariance Estimators

By a simple modification in the case of block Toeplitz and
Toeplitz block Toeplitz matrices, the projected covariance
estimator of the previous section almost surely yields posi-
tive definite Hermitian matrices. Instead of taking sample
means down (block) diagonals as in Egs. (7) and (8), take
the weighted means

An+Ap+---+ A

Po - . (9)
A A . An— n
P, = 12tAxsz+---+ 1, , (10)
n
- Al.n
P,..1= ma (11)

then set the covariance estimate to be R = toeplitz(Po, P1,

..,Py_1). This weighted projection almost surely yields
a positive definite block Toeplitz or Toeplitz block Toeplitz
covariance estimate. To see this, note that if A = (A;j)
is a sample covariance matrix, then Py (k= -n+1, ...,
n — 1) represents a (matrix) autocorrelation sequence [7],
which has a positive power spectrum. This property is very
attractive when there are fewer samples than degrees of
freedom.

In addition to producing a positive definite estimate,
this method also has the advantages of speed and ease of
computation. However, this estimator is not based upon a
statistical model, and for the application of adaptive nulling,
there is no reason to believe that it will yield improved per-
formance. In fact, as will be seen in the next section, this
method may not yield better performance than the sample
covariance matrix estimate.

3. RESULTS AND DISCUSSION

We will compare different covariance matrix estimation meth-
ods by examining the the SINR loss achieved by the fully
optimum and several suboptimum STAP algorithms [12].
The SINR loss measures the loss in target power resulting
from adaptive nulling. In symbols,

[wHv|?

SINR loss = (_VTI;!RT)(F{V)-,

(12)
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Figure 1: SINR Loss versus doppler (sample support = 1 x degrees of freedom) for four classes of STAP algorithms. The
ideal performance is shown by the thin black curve. Note that the ML’s performance {thick black curve) exceeds all other
methods both in the width of the clutter notch and the SINR loss away from mainlobe clutter (at 1/4 doppler), except for
the PRI staggered post-doppler algorithm. In this case, we have 3% blocks each of order 8, which has less structure than
the other algorithms—fully optimum has 82 blocks each of order 8, displaced phase center (DPC) pre-doppler has 82 blocks
each of order 3, and DPC PRI-staggered has 6% blocks each of order 4.

where v is the steering vector, w is the adaptive weight
vector, and R is the covariance of the interference-plus-
noise. Of course all adaptive algorithms will suffer SINR
loss near interference; however good nulling algorithms will
not have significant losses away from the interference.

The scenario considered is a airborne radar with N = 8
elements and M = 8 pulses per CPI, whose velocity is such
that 1 half-interelement spacing is traversed per PRI, and
a uniform clutter environment with 40dB clutter-to-noise
ratio. A crab angle of 30° is used, resulting in mainlobe
clutter at a normalized doppler frequency of 1/4. There is
no back lobe clutter. The ideal clutter covariance matrix for
this scenario is Toeplitz block Toeplitz; however, we shall
only assume a block Toeplitz structure, i.e., no pulse-to-
pulse mismatches.

STAP algorithms may be classified by the domain in
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which adaptivity occurs—element or beamspace, and pre-
or post-doppler processing [12]. In any domain, the opti-
mum (w.r.t. SINR) weight vector is given by the well-known
equation

w=R"lv, (13)

whose degrees of freedom is MN. Because this product
can be quite large for moderately sized systems, reduced
dimension suboptimum STAP algorithms are attractive. In
this case, the suboptimum weight vector is given by the
equation

w = T(T"RT)" ' T"v, (14)
whose degrees of freedom is the column dimension of T,
where T is a transformation matrix into one of the STAP
domains shown in Figure 1. If T is block Toeplitz, then
block Toeplitz structure is preserved in the reduced di-
mension space, and structured covariance matrix estimators
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may be considered.

A set of complex Gaussian data with the ideal clutter
covariance matrix for this scenario [10] is generated. The
number of independent samples available for covariance es-
timation is chosen to be exactly the adaptive degrees of
freedom—a low sample support scenario. This equals 64 for
the fully optimum STAP algorithm, and 24 for the reduced
dimension STAP algorithms. The SINR loss of these STAP
algorithms using the covariance estimation techniques de-
scribed in section 2 are shown in Figure 1. For comparison,
the loss using the known clutter covariance matrix is plot-
ted using a thin black curve. Because of the small sample
support, the sample covariance matrix yields a poor esti-
mate of the clutter covariance matrix, resulting in severe
SINR loss (8-25 dB) away from mainlobe clutter. The pro-
jected covariance estimator (thin gray curve) yields abysmal
performance for all algorithms because its estimate is not
necessarily positive definite. The weighted projected co-
variance estimator (thick gray curve) yields similar perfor-
mance to the sample covariance matrix, except that the
notch at mainlobe clutter is significantly wider, resulting in
decreased doppler coverage for all algorithms. In contrast,
for all but the PRI-staggered post-doppler algorithm, the
ML covariance estimator (thick black curve) [for P = 4M
in Eq. (3)] suffers only minor losses (2-4dB) away from
mainlobe clutter, and, for all algorithms, has a compara-
ble notch width at mainlobe clutter as the ideal (known
covariance) STAP algorithm.

We observe that the ML’s performance improves as the
amount of structure increases, a trend exhibited in Fig-
ure 1. PRI-staggered post-doppler has 3% blocks each of
order 8 and yields 4-10 dB of loss away from mainlobe clut-
ter, whereas the other algorithms have more structure and
less loss.

Structured covariance matrix estimation algorithms ap-
plied to Mountaintop data {11} are shown in Figure 2. This
plot shows residual clutter-plus-noise to signal ratio versus
range for a DPC pre-doppler STAP algorithm (14 elements,
16 pulses, 3 subapertures) for an adaptive weight vector
(unit gain on target) steered near mainlobe clutter.

4. CONCLUSIONS

In this paper several structured covariance matrix estima-
tors were considered in conjunction with the performance
of STAP algorithms that use them. It is shown using simu-
lation and experimental data that with limited sample sup-
port for a block Toeplitz covariance matrix, an ML estima-
tor based upon the EM algorithm can yield superior adap-
tive nulling performance to other estimators. Based upon
the results in this paper, we make the following recommen-
dations to those who wish to estimate block Toeplitz co-
variance matrices for adaptive nulling: (1) make sure that
the assumption of block Toeplitz structure is valid (e.g.,
array errors and multipath reflections ruin spatial and tem-
poral stationarity, respectively); (2) in situations (such as
data analysis) where greater computational intensity can
be afforded, use an ML estimator; (3) if the computational
intensity of ML cannot be afforded, use a diagonally loaded
sample covariance matrix; (4) if the weighted projected es-
timator is used, verify that it yields improved performance
in an idealized setting.
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Figure 2: Residual clutter-plus-noise to signal ratio versus
range using the Mountaintop database [11] with a DPC pre-
doppler algorithm (data collected 9 March 1994 at White
Sands, New Mexico). An adaptive weight vector steered
near and away from mainlobe clutter (DOF = 3 - 16, unit
gain on target) generated using 61 samples of data between
25 and 30 nmi is applied to clutter between 30 and 40 nmi.
The algorithms’ performance agrees with the simulation re-
sults shown in Figure 1.
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