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ABSTRACT

Several works reported in the literature show that the sub-
space-based linear methods are computationally much more
interesting than the eigendecomposition-based techniques
and only slightly less accurate from the statistical point of
view. They therefore have a clear potential for real time ap-
plications. We here retain the basic ideas behind this class
of methods and we formulate the subspace tracking prob-
lem as a classical adaptive least squares (LS) one. Solving
this adaptive LS problem results in subspace tracking algo-
rithms of computational complexity linearly proportional
to the sample vector dimension. We suggest a possible im-
plementation for tracking the direction-of-arrival (DOA) of
slowly moving sources using the LS approach. The prob-
lem of estimating crossing targets is also discussed and we
propose an efficient strategy to deal with it.

1. INTRODUCTION

In high resolution signal parameter estimation, the subspace-
based methods have been of great interest in recent years
[1). Those based on batch eigenvalue decomposition of
the sample covariance matrix have particularly been inves-
tigated and several techniques proposed in the literature
are the outcome of this research effort. However, the in-
tensive computational implementation of such an approach
prevents its use in real-time applications.

In an attempt to overcome this limitation, various adaptive
algorithms for subspace tracking have been proposed and
reported in the literature [2]-[5]. The main motivation of
our work is the research of subspace-based methods which
do not need any eigendecomposition operation. Represen-
tative members of these so-called “linear” methods (LMs)
are BEWE, SWEDE, and the propagator method (PM)
(see [10] and the references therein). These methods es-
timate the subspaces using only linear operations on the
collected data. Thus, the LMs can easily be implemented
in subspace-tracking applications by recursively updating
the sample covariance matrix using an appropriate tech-
nique. The resulting algorithms form by themselves, a fam-
ily of subspace tracking algorithms of complexity varying
from O(MK) to O(M?K) operations where M is the in-
put vector dimension and K is the number of source sig-
nals. Unfortunately, in our computer simulations, we ob-
served that these algorithms offer poor performance when
the sources are closely spaced or when some of them cross.
The largest portion of this paper will be devoted to a differ-
ent approach. Indeed, we show that the problem of tracking

Copyright 1997 IEEE

the subspaces using the LMs can also be treated as a clas-
sical adaptive least squares problem. Based on this obser-
vation, we derive a gradient-based and an RLS adaptive al-
gorithm of complexity O(M K'). Accordingly, this approach
will be referred to as linear approach for subspace tracking
(LAST). The main interest of LAST relies on the fact that
the subspaces can be expressed as an explicit fonction of
the DOA’s. Keeping this in mind, we suggest a target an-
gle tracking algorithm based on the prediction of the DOA’s
and LAST. The performance of the resulting tracking algo-
rithm is illustrated in situations concerning closely spaced
and crossing targets.

2. THE SUBSPACE-BASED LINEAR
METHODS

Consider the samples #(t), recorded during the observation
time on the sensor outputs satisfying the following model:

z(t) = A(6)s(t) + n(t) (1)
where z(t) € CM*! is the data vector, s(t) € C¥X! is the
vector of signal amplitudes, n(t) € C¥*! is an additive
noise, and A(9) = [a(61),...,a(8x)] € CM*K is the matrix
of the steering vectors a(8;) and 4;, j = 1, ..., K is the DOA
of source j, measured with respect to the normal of the ar-
ray. It is assumed that a(f;) is a smooth fonction of #; and
that its form is known (i.e. the array is calibrated). Under
the common assumptions that the complex amplitudes 8;(¢)
are stationary random variables and that the components
of the noise vector n(t) are zeromean stationary random
variables uncorrelated with a8;(t), the covariance matrix of
the received signals can be defined by

R = E[z(t)="(t)) = ASA" + R, (2)

where S = E[s(t)a”(t)] is the signal covariance matrix as-
sumed to be nonsingular (”*” denotes Hermitian transpo-
sition) and Ry, is the noise covariance matrix. The common
underlying assumption for the introduced LMs is that the
steering matrix A, being of full rank, has at least one set
of K rows which forms a nonsingular matrix. The LMs
then differ from one to another in the way of exploiting this
assumption and in other additional considerations [10].

2.1. Subspace estimation using the LMs

The estimation of the subspaces in a typical off-line applica-
tion using the LMs can be achieved in two steps. First, the
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covariance matrix is entirely or partially estimated from N
snapshots of the array output {®(t)}{L,. Then, the noise
or signal subspace is computed by applying simple linear
operations on the corresponding block-covariance matrices.
The statistical performance of the LMs for estimating the
direction-of-arrival of multiple -fixed- targets were investi-
gated and compared with MUSIC (see [9] and the references
therein). All these methods were shown to be computation-
ally much more interesting than MUSIC and only slightly
less accurate from the statistical point of view. For details
on the off-line implementation of the discussed LMs, we
refer to [10] where the number of operations is also given.

2.2. On-line implementation: First approach

Based on the aforementioned off-line estimation procedure,
the LMs can easily be implemented in the on-line case by
using a time-varying data covariance matrix. This matrix
can then be updated by using, for instance, exponential
windowing

R(t) = BR(t — 1) + (1 - B)=(t)=" (t) 3)

where 0 < 8 < 1 is a forgetting factor to be suitably cho-
sen. This technique has been applied to SWEDE in [6]. The
applicability of this first approach to BEWE and the PM
for tracking the DOA’s of moving sources has been veri-
fied in our simulations. Implementing the resulting sub-
space tracking algorithms demands an order of operations
of O(MK) for BEWE, O(M K?) for SWEDE and O(M?K)
for the PM. We found however that these tracking algo-
rithms perform poorly when the targets are closely spaced
or when some of them cross. In order to overcome this
problem, we propose to focus on a different approach, the
so-called linear approach for subspace tracking (LAST).

3. LINEAR APPROACH FOR SUBSPACE
TRACKING

BEWE and SWEDE may be viewed as special cases of the
PM which was shown to be the most performant from the
statistical point of view but also computationally the most
requiring [9, 10]. LAST retains the key idea of the PM while
reducing its computational implementation. Consider the
following partition of A

K M- K

AT = [AF  Af) @

where we assume that M > K. Under the assumption that
A, is nonsingular, the PM defines a unique linear operator
P e CEXM=K) gich that

P2 ATHAR, AH[ 4 ] —A"Q=0 (5

Clearly, matrix @ in (5) spans the noise subspace. Further-
more, it is quite easy to see directly that Q¥ = [I P]
satisfies Q¥ Q = 0. Consequently, the problem of estimat-
ing the noise and signal subspaces using the PM can be
reduced to that of finding the operator P. In most of the
works reported in the literature concerning the PM, the op-
erator P is estimated by applying linear operations to the
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sample covariance matrix {7, 8]. In order to avoid comput-
ing the whole covariance matrix, we propose to minimize
the following scalar fonction

J(P) = Elz; — PHg,)? (6)

where |.| is the Euclidean vector norm and where ®; and 2,
are vectors made from the elements of &(t) corresponding to
the rows of A; and A;, respectively. Note that, in the no-
noise case, the definition (5) of the operator P still holds in
(6). Note also that, in the presence of noise, we are dealing
with a classical adaptive least squares problem and, as such,
a number of optimization techniques can be developed (see

e.g. [12]).

3.1. Optimization by a gradient technique

It is straightforward to apply a gradient technique to (6)
which results in a subspace tracking algorithm of computa-
tional complexity 3M K + O(K?)

{ P(t)y= P(t—1) + pz:(t)e () @)
e(t) = m(t)— PE(t - 1)z (t)

where 4 > 0 is the step size. This algorithm was derived in
a different way in {11] and its performance for estimating
the DOA’s of slowly moving sources was investigated.

3.2. Optimization by an RLS technique

Using an exponentially weighted least squares technique,
we minimize the cost function

J(P) = Zﬂ"‘lze(i) - PP ()2, (5) (®)

This function attains its minimum value if

P(t) = G()H() (9)
G(t) = BG(t—1)+z(t)er (t) (10)
H(t) = BH(t-1)+ = ()i (t) (11)

A more numerically efficient way to compute the inverse of
G is to apply the matrix inversion lemma to the recursive
equation (10). The resulting algorithm for updating P(t)
is given below without derivations.

h(t)= C(t—-1)=z1(t)[8+=F (H)C(t — V=1 (t)]

cit)y= p'[Cc(t-1)-ht)zf(H)C(E -1)]

ety= @2(t) — PH(t - )z (t)

P(t)= P(t—1)+h(t)e”(¢)

(12)

Note that the signal subspace which results from the min-
imization of (6) may be estimated by using the approach
outlined in section 2. The main interest of using LAST
relies on the fact that P (and consequently the noise and
signal subspaces) is an explicit fonction of §. This will be
the topic of the following section.
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4. DOA ESTIMATION USING LAST

By using an efficient technique to predict {8, }JK=1 at time
t, it may be possible to predict the operator P(t) accord-
ing to its definition in (5). Then, with the P(t) predicted
in this way, we can force any of the LAST algorithms to
converge to the “true” P(t). We propose to track the
DOA’s using the approximate Newton algorithm (see e.g.
[6]) which results from the minimization of the cost func-
tion f(8) = a”(6)I1a(#) where II is the orthogonal projec-
tor onto the noise subspace. However, convergence to the
global minimum can be guaranteed only if initialized in the
vicinity of the global minimum. Assuming that 8 is a slow
function of time, we use some dynamic parameters such as
the bearing velocities #(t) and accelerations 8(t) to predict
it and hence to have initial guesses for the true values of P
and 6.

4.1. The tracking algorithm

In this subsection we give a more detailed specification of
a possible implementation of the proposed tracking algo-
rithm. When a new data sample ®(t) is available, we use

ot — 1), the predicted DOA at time ¢ — 1, to obtain f’(t)
according to (5). ﬁ(t) is then inserted in the RLS algo-
rithm (12) and estimates f’(t) and as(t) are obtained. The
DOA’s are estimated via the approximative Newton algo-
rithm initialized with 8(t — 1) and Q,(t). Finally, 8(t) is
predicted using 6(t) and 6(t) previously updated with a
moving rectangular window of length L.

FORt=1,2,.. DO
A() = Update_A[§(t — 1)];
P(t) = ATH (8) AF (9);
h(t) = C(t - )z (B)[B + = (H)C(t — Va1 ()]
c(t)=p"1[C(t-1) - )= (t)C(t-1)];
P(t) = P(t) + h(t)[=f (t) — =F (&) P(t)];
Q,(t)=[I PWIF; Q,(t)=orth(Q,(t));
fit) = In - Q. (6)Q; (8);

_ Re[d?(®)li()a(6)], _

d2(9)I(t)d(s) °=%(-D

6;(t) = L7[(L — 1)8;(t — 1) + 8;(t) — 85(¢ — 1)};
85(t) = L7[(L — 1)8;(t — 1) + 8;(t) — 65(¢ — V);
05(t) = 8;(t) + 6,(t) +6,(t)/2;

END_FOR

8;(t) =05t — 1)

where orth(@ .) returns an orthonormal basis of the columns
of Q,, d(8;) = da(6;)/df; and Update_A(f) is a pro-
cedure for computing the steering matrix using 6. The
implementation of the proposed DOA tracking algorithm
is 0(MI(2) +3MK + 0(1(2) complex multiplications, It
is important to note that according to this DOA tracking
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scheme, the data association problem does not arise: the as-
sociation problem is embedded in the problem of estimating
the subspaces and the DOA’s. More elaborated DOA track-
ing algorithms involving motion dynamics are described in
[13, 14]. Note also that a similar technique based on the
predicted DOA’s has recently been discussed in [15].

4.2. Tracking crossing targets

In the definition of P, the inverse of A; can be a source
of numerical instability. It occurs when the DOA’s tend
to be equal. We propose some modifications to take into
account situations where the targets may cross. Consider
the following criterion

19:(6) —8;(O) 27, j#4 (13)
where 7 is a chosen threshold value. If some targets in
(13) are close to each other, we update A by considering
only one of the targets within a distance of 7. During the
crossing time period, the tracks of the remaining targets
are estimai;gd using the most recent estimates of 8, § and ¢
available: 8;(t) = 8;(t—1)+6;(t—1)+8;(t—1)/2. Obviously,
the rank of the resulting steering matrix A’ will be less than
K and, hence, the inverse of A; should be replaced by its
pseudo-inverse such that P = A} (AF A])™! AL¥ where A
and Aj are obtained from the partition (4) of A’.

5. NUMERICAL EXAMPLES

We here present some simulation results illustrating the
properties of the discussed subspace-based linear methods
for tracking slowly moving sources. In the first example we
estimate the DOA’s of four uncorrelated signals impinging
on a uniform linear array of 10 sensors. The sensor separa-
tion is half a wavelength. They have an SNR of 0 dB, 5 dB,
4 dB and 4 dB, respectively. We apply BEWE and the PM
after having updated the sample covariance matrix via (3)
with a forgetting factor 3 = .97. After each subspace up-
date, we apply TLS-ESPRIT to compute the DOA’s from
the signal subspace update. Note that SWEDE cannot be
used in this scenario because it requires M > 3K [6]. Fig-
ures 1(a) and (b) exhibit the simulation results. In a sec-
ond example, the same scenario is considered except that
the sources are closely spaced. We again apply the PM and
the proposed LAST algorithm with predicted DOA’s devel-
oped in Subsection 4.1. The length of the moving rectan-
gular window is L = 50 and 8 = .97. Figures 1(c) and (d)
depict the obtained results. In the last experiment, we in-
vestigate the performance of LAST with predicted DOA’s
for tracking sources with crossing angles. For this purpose,
we assume that there are one source with constant DOA
and SNR=0 dB and four moving sources with 4 dB each.
We set 7 = 2°, 8 = 0.97 and L = 80. Fig. 2(a) dis-
plays the LAST DOA estimates. As a comparison, we use
the exact eigenvalue decomposition. The sample covariance
matrix is updated using (3) and 8 = 0.97. Then, we apply
TLS-ESPRIT to compute both the signal subspace and the
DOA’s. The results are shown in plot (b) of Fig. 2.

We make a few observations from these figures.

- In the example involving well-separated moving sources
(Fig. 1(a) and (b)), BEWE and the PM perform similarly
and quite well.
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(a) BEWE (b) The PM
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Figure 1: DOA estimates for well-separated ((a) and (b)),
and closely-spaced ((c) and (d)) signal sources.

- In Fig.1(c), while the PM fails to work when two targets
are closely spaced, LAST performs satisfactorily. Fig.1(d)
shows that the prediction of the DOA’s improves the robust-
ness of this algorithm in resolving closely spaced signals.

- In the case where some of the targets cross (Fig. 2(a)
and (b)), the performances of TLS-ESPRIT are degraded.
Moreover, the estimates are not correctly associated with
previous estimates when the targets temporarily overlap.
On the contrary, the proposed LAST algorithm with pre-
dicted DOA'’s shows excellent tracking performance.

6. CONCLUDING REMARKS

In this paper we have discussed the applicability of the so-
called subspace-based linear methods for tracking the sub-
spaces recursively. We retained the basic ideas of one of this
methods and we showed that the subspaces can be obtained
as a solution of an unconstrained minimization problem.
The main interest of this interpretation relies on the possi-
bility of using predicted DOA’s. We suggested an algorithm
for tracking the DOA’s and we give some computer simu-
lations demonstrating the success of this approach. Future
works will be a theoretical analysis of the convergence prop-
erty and a comparative study with other subspace tracking
algorithms.
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