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ABSTRACT

In this paper, for the estimation of the model coefficients
of a polynomial autoregressive process with non-Gaussian
innovations least l,-norm estimation (LLPN) is suggested.
Simulations showed that LLPN estimation leads to bet-
ter estimates than the least squares estimation in terms
of the mean and the standard deviations of the estimates.
The algorithm is also employed in modeling audio data in
non-Gaussian noise with the objective of separating signal
from noise and superior results have been obtained when
compared to the linear autoregressive modeling. Directions
of future research is also addressed.

1. INTRODUCTION

One of the most popular mathematical models for a wide
range of signal processing applications such as speech, audio
and image has been linear autoregressive (AR) processes.
The popularity of the linear AR models is motivated by
the simple structure of the AR processes and the existence
of efficient techniques for estimating the model parameters.
However, in many applications, the signal under investiga-
tion is generated by some nonlinear dynamics, in which case
linear models fall short of efficiently describing the data and
the identification schemes fail. It has been shown that most
biomedical signals such as EEG, [1] ECG and HR time series
[2] and some geophysical signals [3] are more successfully
represented by nonlinear autoregressive (NAR) processes.
Nonlinear autoregression provides one with a wide range
of different models to choose from, just to name a few,
exponential autoregressive processes (EXPAR), threshold
autoregressive processes (TAR), random coefficient autore-
gressive processes (RCA), etc [4]. However, most of these
models do not suggest any procedures for easily estimat-
ing the model parameters and their potential use is limited
only to specific applications. One family of NAR models,
namely polynomial autoregressive (PAR) models polynomial
autoregressive models (PAR) which can be represented as

y(m) =Y ol z(n—i)+y 3 aff s(n—i)z(nj)...+e(n)

0
do not share these drawbacks. They possess the property
of being linear in the parameters and therefore many math-
ematical tools developed for linear models can be extended
to accommodate for polynomial models. As can be seen

Copyright 1997 IEEE

from Eq. (1), polynomial autoregressive models are based
on the Volterra series expansion which has been employed
with great success in nonlinear system modelling, (e.g. in
[5]) and which are theoretically very attractive since it can
be shown that a very large class of nonlinear systems which
do not have saturating elements can be represented by Vol-
terra series [6]. A main motivation of linear (AR) model-
ling was the proof by Kolmogorov that every linear system
could be represented by a linear AR model of infinite or-
der. Similarly, it can be shown that every nonlinear system
with a Volterra series expansion can be represented as a
polynomial AR model of infinite order [7]. Therefore, PAR
models are general enough to model various nonlinear gen-
eration mechanisms for signals. The main drawback of the
PAR models is the curse of dimensionality: as the order
of nonlinearity and the memory size increased, the number
of model parameters increases geometrically. However, one
can delete some of the terms in the expansion that are of
less importance and use a partial model (see e.g. [9]).

2. NONLINEAR AUTOREGRESSIVE
PROCESSES WITH NON-GAUSSIAN
INNOVATIONS

In almost all of the work published so far, it has been
assumed that the excitation (or the innovation) sequence
e(n),n=1,2,...in Eq. (1) is a time serie of i.i.d. Gaussian
random numbers. However, in some applications the time
series exhibit characteristics that cannot be accommodated
by the Gaussian innovations (e.g. in the case of skewed
data). Examples include the wind speed data, the service
time in a queue or the daily flows of a river. Lawrance
and Lewis suggest employing exponential variables because
of its simplity and analytical tractability and they provide
simulation results for wind velocity data [8]. However, we
believe that a more flexible probability distribution function
should be used to model the excitations.

Employing non-Gaussian excitations is further motivated
by the fact that many noise processes such as atmospheric
noise, underwater acoustic noise and low frequency electro-
magnetic disturbances show an impulsive character which
points out an underlying distribution with heavier tails than
the Gaussian p.d.f.. Although various models were sugges-
ted for impulsive noise, a-stable processes which only re-
cently attracted the attention of the signal processing pro-
cessing community with the works of Nikias et al. (e.g.
[10]) seem to be the most general and accurate class since
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they can be derived rigorously as the limiting distribution of
noise processes based on realistic assumptions on the gen-
eration mechanisms of noise. One further justification of
a-stable noise model is the generalized limit theorem which
states that the limit sum of a large number of random vari-
ables with possibly infinite variances is distributed with a
stable law [11].

A random variable is called a-stable if its characteristic
function (which is the Fourier transform of the pdf) can be
expressed in the following form:

(2) = exp{jaz — vlz|*[1 + jp sign(z) w(z,0)]}  (2)

where w(z,a) = tan &%, if @ # 1 and w(z,a) = 2 log|z| if
a=land —co<a<o0,v7>0,0<a<2 -1<4<1L
The characteristic exponent, a, is a measure of the thickness
of the tails of the distribution. The special cases a = 2 and
a = 1 with 8 = 0 correspond to the Gaussian distribution
and the Cauchy distribution respectively. The symmetry
parameter, § = 0, corresponds to a distribution that is sym-
metric around a, in which case the distribution is called
Symmetric a-Stable (SaS). The location parameter, a, is
the symmetry axis. Finally, the dispersion, v, in analogy to
the variance of the Gaussian distribution, is a measure of
the deviation around the mean. A thorough discussion of
a-stable distributions can be found in [10].

We believe that based on the above facts a-stable dis-
tribution is a very appropriate model for the excitation of
PAR. It is flexible, has the special case of Gaussian distri-
bution and general enough to investigate the potentials of
nonlinear autoregressive modelling.

3. POLYNOMIAL AUTOREGRESSIVE
PROCESS COEFFICIENT ESTIMATION

3.1. Least Squares Estimation

Since the polynomial autoregressive model is linear in the
parameters, we can incorporate the linear and polynomial
data terms and the coefficients for the linear and polyno-
mial terms into an extended data vector and an extended
parameter vector respectively and express PAR with the
following linear equation:

x(n) = x%,czt (n)aN,ezt (3)
where

xNest(m) = X @)xP (@) ... xXP @7 @)

and b

- ay] (5)
Above, P is the order of the truncated polynomial autore-
gressive model, N is the memory size of the filter and
X0 = [pn-1) 2(n-2)...z(n - N7, x = [z%(n ~
1) z(n~1)z(n—2)...z*(n—N)]7, etc, and a%‘)’s are the cor-
responding PAR coefficients. Then, the usual least squares
problem can be solved to obtain the coefficients as

Aozt = [ag)aﬁ) .

aN,eot = E[XN eztXN eze]  E[XN,eotz(n)]. (6)

Almost all of the previous work using PAR for modelling
have suggested using least squares for estimating the PAR
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coefficients. However, least squares estimate is optimal only
for Gaussian data. Specifically, in the case of a-stable data
for which the variance diverges to infinity, the estimates
of the second order moments employed in Eq. (6) are not
reliable and therefore alternative techniques should be em-
ployed.

3.2. Least [,-Norm Estimation

As mentioned above, the analogue of variance in an a-stable

variable is the dispersion 4 which is related to its moments

with the following equation [10]:
E(IXI) = C(p, a)y"'* —-1<p<a. (7)

Then similar to the MMSE criterion for Gaussian signals

which lead to least squares estimation, minimum dispersion

{MD) criterion [10] can be defined which leads to least I,-
norm estimation:

&N .ot = argmin »_ |8(n) = Xy et (R)aN,cael’,  (8)

n

where & is the estimate of the actual a. It should be em-
phasized that the least [;-norm estimates are not only op-
timal in MD sense for a-stable data but also are optimal
in maximum likelihood sense for another family of distribu-
tions namely the generalized Gaussian distribution which
recently found applications in the field of image processing
[12].

For the solution of this [,-norm minimization problem,
we propose an extension of the iteratively reweighted least
squares algorithm (IRLS) algorithm which can be coded
compactly as:

1. 400) = (XTX) ' XTxn

2. ri(k) = (xnv — Xa(k)):

3. Wi(k) = plri(k)[P 2

4. a(k+1) = (XTW(E)X) " XTW (k)xn
5. i I+l ~lir®llp)

< € then stop, else go to

Hr (k) (p)
step 2.
where
z[1] 0 . 0
z[2] z[1} 0
x = : : : )
2l) (L 1] o[l —N+1]

and the weigthing matrix W is a diagonal matrix with di-
agonal entries

1p—2 .
W.-,»={ I Irid > e (10)

2 Inl<e

For the solution of Eq.(8), we replace the data matrix X’
with the Volterra data matrix X defined as

xK) [ xD @ X ] (11)
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a L method std estimates
actual 0.5000 -0.0100 -0.0020
1.0 | 100 LLMN 1| 0.2338 | 0.5046 -0.0147 -0.0022
LS 0.5541 | 0.5308 -0.0502 -0.0028
1000 | LLMN | 0.5719 | 0.4987 -0.0163 0.0010
LS 1.1270 | 0.5008 -0.0208 0.0010
1.5 { 100 LLMN 1 0.5047 | 0.5151 -0.0260 -0.0055
LS 0.5327 | 0.5050 -0.0325 -0.0045
1000 | LLMN [ 0.2520 | 0.4982 -0.0130 -0.0011
LS 0.5243 | 0.4950 -0.0194 -0.0009

Table 1. Estimates of the model (I); L: block length,
std: total standard deviation

of length 100 are not enough for efficient estimation since
very high standard deviations were observed in this case.
Considering results obtained with sequences of length 1000,
Least [,-norm parameter estimates have significantly lower
standard deviation and are closer to the actual parameter
values. Despite LLPN’s superiority to LS estimation, for
tap weights with relatively smaller magnitudes, percentage
estimation errors in some cases were seen to be large. This
characteristic is mainly due to the high condition numbers
of the matrices employed in the equations which is caused
by the fact that the eigenvalues of the polynomial systems
are dispersed over a much wider range. Singular Value De-
composition can be applied to improve the solutions.

o L method std estimates
actual 0.5000 -0.0500 0.0100 0.0020 -0.0010 0.0005 0.0001
10| 100 | LLMN | 0.1483 | 0.5026 -0.0488 0.0044 0.00089 0.0015 -0.00088 0.00021
LS 0.8310 | 0.4728 -0.0557 -0.0183 0.000017 0.0061 0.0021 0.00011
1000 | LLMN [ 0.0122 | 0.5002 -0.0507 0.0097 0.00098 -0.00056 0.00007 -0.00001
LS 0.1131 | 0.5097 -0.0646 0.0207 0.00101 -0.00010 -0.00013 -0.00001
1.5 | 100 | LLMN | 0.3677 0.5000 -0.0500 0.0100 0.0010 -0.0005 0.0001 -0.00001
LS 0.6209 | 0.5056 -0.0594 0.00032 0.0051 -0.0039 0.00027 -0.00199
1000 | LLMN | 0.0654 | 0.4983-0.0532 0.0090 0.0018 -0.00034 0.00041 0.00005
LS 0.1351 | 0.4973 -0.0497 0.0035 0.00115 0.00061 -0.00073 0.00001
Table 2. Estimates of the model (II); L: block

length, std: total standard deviation

where K is the order of the nonlinearity, and X ) are the
data matrices containing the polynomial terms of degree i
from the Volterra expansion, e.g. :

- 221 0 e 0 7
222 a2l 0
A=\ N aNeN-1] ... 220 ,
| 221 LD - 1] 2L-N+1 |
(12)
etc.

4. SIMULATION STUDIES

4.1. PAR Process Coefficient Estimation

To evaluate the perfomance of least {,-norm minimization in
estimation of the parameters of polynomial autoregressive
processes with non-Gaussian innovations, and to be able to
compare with the performance of least squares technique,
the following PAR processes were generated: (I) : z(n) =
0.5z(n — 1) — 0.01z(n — 2) — 0.002z(n — 1)z(n — 2) + €(n)
and (I1) : z(n) = 0.5z(n~1)—0.05z(n—2)+0.01z(n—3) +
0.002z(n—1)z(n —2) —0.001z(n — 1)z(n — 3) + 0.0005z (n —
2)z(n—3)+0.0001z(n—1)z(n—2)z(n—3)+¢(n) where e(n)
are a-stable distributed {specifically with o = 1 or & = 1.5).
For each model and each « choice 40 sequences of lengths
100 and 1000 were generated. The results are presented in
Table 1, Table 2.

From the simulation results, we observe that sequences
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4.2. Modelling Audio Data in Impulsive Noise

Next, least [p-norm parameter estimation method is applied
in modeling real audio signal corrupted with impulsive noise
with the PAR model in Eq. (1). The data shown in Fig.(1)
is modeled with first (linear) and second (quadratic) or-
der PAR processes with a-stable innovations, the results of
which are given in Fig.(2) and Fig.(3), respectively.

The modelling process with quadratic LLPN filter effect-
ively seperated the audio signal and the impulsive noise
which acts as the innovations sequence for the PAR pro-
cess, while the linear filter has been very unsuccessful in
modeling the the audio signal and in seperating it from the
impulsive noise. The appeal of the suggested algorithm is
that it can be applied to any data with outliers. Epileptic
EEG is one of the many possible application areas where
nonlinear autoregressive modeling with least {,-norm estim-
ation can lead to a better understanding of the data.

5. CONCLUSION

In this work, a new technique is suggested for the estimation
of the parameters of PAR processes with non-Gaussian in-
novations. The innovations are modelled with a-stable dis-
tribution which provides a very wide class of distributions.
The suggested method in general showed better perform-
ance than least squares estimation in terms of the mean
and the standard deviation of the estimates. One potential
application of the new technique is demonstrated with an
example which gave encouraging results. Modelling with
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other nonlinear autoregressive processes and model order
estimation are the subjects of the current research. Bio-
medical and other types of data are also under investiga-
tion.
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