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ABSTRACT

Current algorithms for estimating the parameters of a
symmetric alpha-stable ARMA process are either highly
non-linear, or assume small MA orders (g < 3), or invoke
the minimum-phase assumption. We use results from the
statistics literature to show that the normalized correlation
is well-defined; we show that the normalized cumulants are
also well-behaved. We propose to use the correlation to
estimate the spectrally-equivalent minimum-phase (SEMP)
parameters, and then to use the cumulants to resolve the
phase of the model. We also show that correlation-based
techniques (such as ESPRIT) work well for estimating the
parameters of harmonics observed in alpha-stable noise.
Correlation-based algorithms are shown to work well de-
spite the infinite variance of the alpha-stable process.

1. INTRODUCTION

In typical signal processing applications, additive noise can
often be well modeled as the sum of a nominal stationary
Gaussian component (thermal noise, etc) and high ampli-
tude non-stationary, non-Gaussian (NG) components. Tra-
ditional models for the NG component include the Middle-
ton model and its simplified versions such as the Gaussian-
mixture model, the K-distribution, etc.

Over the last few years, lot of attention has been given to
the stationary symmetric alpha stable (SaS) process. The
characteristic function of the SoS random variable (rv) is
given by {9], E{exp(jvz)} = exp(—0*[v|*), 0 < a < 2. Pa-
rameter « is called the index or characteristic exponent, and
v =0% o > 0, is called the dispersion or scale parameter.
Apart from the lack of a closed-form pdf (a # 1, @ # 2), the
SaS rv possesses various interesting properties such as, tail
probabilities of order |z|~* and E|z|f = o0, p > a, a < 2,
etc [7, 9]. Note that the natural sample estimates of |z|?
are consistent only for —1/2 < p < a/2. These and other
features of the SaS pdf often appear to make parameter
estimation problems intractable. It should also be pointed
out that the limiting case o = 2, the Gaussian, is in sev-
eral ways, a ‘discontinuity’. An overview of alpha-stable
processes may be found in (7, 9].

We address two problems in this paper: the blind iden-
tification of a mixed-phase linear system excited by an iid
SaS random process (rp), and estimation of the parame-
ters of sinusoids observed in SaS noise. The former may be
useful in modeling correlated impulsive noise.

2. COVARIATION OR CORRELATION ?

Since the SaS rv has ‘infinite variance’, the covariation de-
fined by [9, p 94],

Culz,y) = E{X|YP?Y*'}/EYP,1<p<a<?2,
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has often been used instead of the correlation, e.g., [1, 4, 7].
The covariation is well-defined only if X and Y are jointly
alpha-stable, which means, in particular, that they both
have the same a, with 1 < a < 2. Thus, one cannot define
the covariation of a Cauchy rv with a Gaussian rv. Further
both X and Y must be real, or both must be isotropic
complez. The definition of the covariation also depicts an
interesting Bussgang-type property of SaS rv’s, namely that
all fractional cross-moments are equivalent.

The covariation coefficient is the normalized covariation,
and is defined as [7, 9

Aoy = B{X|YP?Y*}/EIYJ ,1<p<a<2. (1)
For a SasS rp, z(n), define
Azz (M) 1= Az(n),s(ntm) -

Note again that the covariation coefficient is defined only
for 1 < @ < 2. Suppose that u(n) is an iid alpha-stable
process; we see that Ay, (m) = 6(m). It is tempting to use
this as a test for the iid nature. Consider the natural sample
estimate of Ayu(m):

N N
Sun(m) = 3 u@)lutn + m)P2y* (n -+ m) / 3 e

n=1 n=1

note that for m # 0, the variance of the sample estimate
will be infinity because E|u|?> = oo. In [4] it is proposed
(in the context of MA parameter estimation) that a value
of p < 1 be used; specifically, in their simulations they
use p = 0.3. But this does not solve our problem. From
our extensive simulations, it seems that smaller values of p
lead to estimates with greater variability. The correlation
coefficient (or normalized correlation) which corresponds to
p=2in (1) seems to be very stable. The natural estimate
of the normalized correlation is

N N
Rez(m) =) z(n)z*(n+m) / > le@)? (2

n=1

We generated N = 500 samples of an iid SaS process,
u(n), with a = 1.5; we also generated the AR(2) process,
y(n) = —0.75y(n - 2) +u(nf. We estimated the covariation
(with p = 0.3) and the correlation sequences; estimates from
M =50 independent realizations are shown in Fig 1 for the
two processes. In both cases, the correlation estimate has
low variance; in contrast, the covariation estimate is not
stable. Similar results were obtained for other values of p.
The figures indicate that the covariation may not be useful
for estimating model orders or model parameters.

The correlation estimator is useful even when a < 1,
in which case the covariation cannot be defined. The top
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Figure 1. Estimates of the covariation with p = 0.3
(top panel) and correlation (bottom panel) of iid
and AR SaS processes. Notice that the correlation
estimates have low variance.

two panels of Fig 2 show the correlation estimate for an
iid SaS process and an AR(2) SaS process, with @ = 0.5
(all other parameters as in Fig 1). Again, note that the
estimates are well behaved, although somewhat noisier than
the estimates in Fig 1.

Since the correlation estimate appears to be well behaved,
it is tempting to consider higher-order moments, cumulants
and the corresponding spectra. We simulated a mixed-
phase MA process, z(n) =Y _ b(k)u(n—k),n=1,..,N,
where u(n) is an iid SaS rp. We let b = [1,2, 3,1, 1]; sample
estimates obtained from N = 4000 samples and 20 realiza-
tions are shown in the bottom panels of Fig 2, for @ = 0.5
and a = 1.5, with p = 4. The circles show the normalized
diagonal slice of the true fourth-order cumulant correspond-
ing to the mixed-phase MA model; notice the excellent fit
and the low variance of the estimates.

3. CONVERGENCE RATES [2,7]

Consider the linear process, z(n) =Y o____ h(m)u(n—m),

where u(n) is an iid SaS process, and impulse response
(IR) {h(n)} satisfies an alpha-summability condition. The
limiting behavior of the sample estimate, R.q(m) in (2),
has been studied in [2], where it is shown that the estimate
converges in probability to

o0

Ran(m) = > h(GhG+m) [ S K@),

j=—o00 j=—o00

which is the deterministic correlation of the IR. Further, it
is shown in [2] that, for 0 < a < 2,

1/
<lo:'n) (Roa(m) — Run(m)) — A(m)V

where the convergence is in distribution; rv V can be ex-
pressed as the ratio Uy /U, where U is a SaS rv with index
a, independent of rv Uz which is a positive alpha-stable rv
with index a/2. Both U; and U; have infinite variances, but
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Figure 2. Top: Correlation estimate of an iid and an
AR Sa8S process with o = 0.5. Bottom: True and es-

timated 4-th order cumulant slice of an SaS MA(4)
process, with a = 0.5 and o = 1.5.

their ratio V has finite variance. The non-random constant
A(m) is the dispersion given by

1/
(Z |Rrn(j +m) — Ran(j — m) — 2th(j)th(m)|°’> .

7

Note that the rate of convergence is much faster than that
for the Gaussian case.

The results of [2] were recently extended in [6], where
they consider the Whittle-type estimator based on the self-
normalized periodogram; they establish weak consistency of
the estimator, and derive the same rates of convergence for
the ARMA parameters, as were derived for R:.(m) in [2].

An intuitive explanation of the ease of estimating the
SEMP parameters is as follows: the energy normalization
suppresses all but the biggest impulses; thus the normal-
ized output consists of (depending upon e, relatively) iso-
lated impulse responses. In addition, the parameter esti-
mation techniques are consistent in the presence of additive
noise (Gaussian or non-Gaussian, white or colored? with fi-
nite variance. Thus, estimating the parameters of a linear
SaS model is easier for o < 2 than it is for @ = 2, the
Gaussian case.

4. MA PARAMETER ESTIMATION

Based on the results of [2] and [6], we propose to use the
correlation to estimate the spectrally-equivalent minimum-
phase (SEMP) model, and then to resolve the true zeros by
cumulant matching. Note that the ‘SE’ part of ‘SEMP’ is
appropriate in view of the results in [6]. The unobserved
input. process, u(n), is assumed to be iid SaS , and the
observed signal is

y(n)=> blk)u(n—k), n=1,..,N. (3)

k=0

Closed form expressions have been developed for ¢ < 3 in
{4]; the solution has a 0/0 problem for ¢ = 2. A covariation-
matching method was also proposed in [4], where it is
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noted that covariation-matching may lead to non-unique
estimates because of the multi-modality of the cost func-
tion.

A non-parametric method, based on the so-called alpha-
spectrum and the differential cepstrum, was derived in [4];
the algorithm involves computation of the Z-transform on
two circles within the region of convergence (ROC). In ad-
dition, the algorithm involves truncation approximations,
knowledge of the ROC, and knowledge of ¢; further, con-
sistency has not been established. Finally, for the typical
case of real signals and real channels, the method requires
that the phase of the alpha-spectrum be continuous.

We note that the alpha-spectrum method and the

covariation-based methods assume that the processes are
SaS ; their performance, for non SaS processes, or in the
presence of additive noise (e.g., sensor noise) is unknown.
The correlation-based methods, on the other hand, are uni-
versally applicable.
Examples: We generated the process in (3), for various
MA models, and SaS inputs with various values of o. Be-
cause of the inherent sign ambiguity, we assumed b(0) = 1.
The sample correlation in (2) was used to fit a long AR
model of order K —gq, where K is the number of correlation
lags used. The MA model parameters were then obtained
via, > 1_, b(k)a(n — k) = 6(n), n = 0,...,p. There are, of
course, much more sophisticated algorithms for estimating
the MA parameters; the point here is not to stress a partic-
ular parameter estimation algorithm, but to demonstrate
that correlation-based techniques work very well even when
the input is SaS . Tables 1-3 show the mean and standard-
deviation of the estimates, averaged over a set of M = 100
realizations. Results are shown for two values of oz o = 0.5
and a = 1.5 gother values of o yield similar results); N is
the number of samples, and K is the number of lags. Note
that the correlation-based method yields unbiased and low
variance estimates of the minimum-phase (MP) equivalent
model.

b(1) b(2) b{5)
true | -4.4000 | -1.6300 | -0.5200
MP 1 0.1567 | -0.0098 | -0.0141
mean | 0.1560 | -U.0100 | -0.0157
std 0.0012 0.00277 0.0078
[ N=2000,M=100K=1Z,a=15 |
mean | U.1503 | -0.0112 | -U.0153
std | 0.0188 | 0.0lcl | 0.0234
Table 1. Estimates for MA(3) model

B ] b [ b3 ] b@

true/MP [ -1.6000 | 1.9000 | -1.0000 | 0.4000
N=2000,M=100,K=20,a = 0.5

mean [ -1.5389 | 1.8496 | -0.9990 | 0.4053

std T 0.0069 | 0.1434 | 0.0890 | 0.0431
=2000,M=100,K=20,0 = 1.5

mean | -1.0844 | 1.8444 | -0.9886 | 0.4003

std | 0.0345 ] 0.0467 | 0.0423 | 0.0245

Table 2. Estimates for MA(4) model

b1 [ b2 bB) T b4

true | -L.9800 | 2.8000 | -1.6500 | 0.7500

MP | -T.6205 | 1.9227 | -L.0I56 | 0.3999
=3000,M=100,K=30,0 = 0.

mean | -1.6100 | 1.0040 | -1.0153 | 0.4038

std | 0.1121 | 0.1048 | 0.1071 | 0.0426
—=J000,M—100,K=30,c — L.

mean | -1.6130 | 10011 | -1.0060 [ 0.3809

std | 0.0365 | 0.0760 | 0.0574 | 0.0352

Table 3. Estimates for MA(4) model
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The preceding examples show that standard correlation-
based {“Gaussian”) software packages may be used to es-
timate the equivalent minimum-phase model. How do we
resolve the zeros? If @ > 1, one could try covariation match-
ing; however, it is not clear that this will lead to unique
estimates, and we have already noted the high variance of
the covariation based estimators.

The cumulant estimates in the bottom panel of Fig 2
exhibit low variance; hence, cumulant-based techniques are
indicated. Corresponding to the ¢ zeros, there are (at most)
27 spectrally equivalent mixed-phase models. The true ze-
ros can be resolved via cumulant matching,

q £ m
mind D [Cay(l:min) = Con(mnlb)” (4)

£=0 m=0n=0

where C are the (normalized) cumulants estimated from
the data, and C(:|#) are the cumulants corresponding to
the model 4, and are given by,

C(¢,m,n|f) = i b(s)b(s + )b(s+m)b(s+n). (5)

8=0

The technique can be extended to non-causal ARMA pro-
cesses provided ¢ is replaced by L = 3p + ¢ in (4), and the
sum in (5) is over s = —Q : @, @ > p+ ¢. In this case, we
have at most 2P7¢ competing models. This is in the spirit
of the cumulant matching algorithms of Tugnait, and Gi-
anmnakis et al [5]; their proofs of uniqueness and consistency
are applicable (after norma.h'zatior?). We quote from [2]:
“Method of moment type estimates of the ARMA param-
eters will be weakly consistent regardless of ¢”. Note that
inherent all-pass factors cannot be resolved by this method,
but can be handled by an extension given in [10].

A covariation-correlation based LS algorithm can also be
developed. Consider:

R(r):= b(n)b(n+T) C(r) =Y fm)b(n+7)

S fERE+T) = Y bn)C(n+T)

from which LS estimates of {b(n)}i_; and {f(n)}:i_y can
be obtained; the matrix will be full-rank if F(z) and B(2)
do not have any common zeros. As an example, if b(n) takes
on only the values 0, £1, the matrix will not have full rank.
If C(7) are the covariations, then, f(n) = |b(n)|*~2b*(n).
Choosing f(n) = b*"(n), £ = 3,4 and the diagonal slice
of the third- or fourth-order cumulants leads to the ‘GM’
algorithm [5)].

5. AR PARAMETER ESTIMATION

We wish to demonstrate that conventional correlation-based
techniques are consistent, estimators of the AR parameters
of a linear SaS process; further, we show that cumulant-
based estimators may offer advantages when the SaS signal
is corrupted by additive Gaussian noise.

Example. The observed signal was y(t) = u(t)/A1(z) +
9(t)/An(z), where signal u(t) wasiid SaS with o = 1,7y = 1;
noise g(t) was iid Gaussian with variance 02 = 1; the AR
parameters were A; = [1,0,0.75] and A, = [1,—0.4,0.6].
We estimated the A; parameters via the ‘normal’ equa-
tions based on conventional second- and fourth-order cu-
mulants. Mean and standard deviations estimated from
100 trials, with N = 1024 samples, are shown in columns 2
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and 3 of Table 4. Corresponding estimates with ag = 100,
A, =[1,0,—0.75], N = 4096 (all other parameters same)
are shown columns 4 and 5 of Table 4. The generalized
SNR (GSNR), 10log;o(7u/0?2) is 0 dB for the first case, and
—20 dB for the second case. The correlation-based method

yields good estimates; the cumulant-based estimators are
less biased at low GSNR.

Noise-free Noisy
true | 0.0000 | 0.7500 . .
correlation-based

mean [ -0.0025 | 0.7454 ] -0.0014 | 0.71
std 0.0156 | 0.0201 || 0.0129 | 0.0061
cumulant-based
mean | -0.0018 | 0.745: -0.0001 | 0.737.
std 0.0101 T 0.0369 0.0145 | 0.0599
Table 4. AR(2) model estimates.

6. HARMONICS IN SaS NOISE

In {1], covariations (with p = 0.8) were used to estimate
the frequencies of real harmonics observed in iid SaS noise;
they proposed the use of subspace methods based on the
covariation.

Based on the results of [2, 6], it seems that standard cor-
relation/periodogram based estimators should yield good
results. We used the time-domain version of correlation-
based ESPRIT; each realization was normalized to unit en-
ergy before the temporal correlation matrix was estimated.
Since second-order statistics are used (hence, phase ran-
domization is not important), multiple realizations can be
created by segmentation.

Example. The observed signal was
y(n) = A@ exp(j2r fin) + A(2) exp(j2m fon) + u(n), n =
1,..., N, where A{l , and A(2), the amplitudes, were zero-
mean unit variance Gaussian rv’s (thus, amplitudes are
fixed for a given realization, they vary from realization to
realization), and u(n) is iid SaS noise with unit dispersion.
We set fi = 0.1, fo = 0.2, N = 40, and M = 16 realiza-
tions (thus, 40 x 16 = 640 samples for each estimate). In
addition to standard ESPRIT, we also passed the observed
signals through the zero memory non-linearity (ZMNL) de-
scribed in {8], and then used ESPRIT on the clipped signal.
Pre-processing the data by using a signed fractional power,
such as in the covariation, is equivalent to using a particular
ZMNL, but is not optimal in any sense. The top panel of
Fig 3 shows the standard deviation (from 100 Monte Carlo
runs) of the estimates as a function of o. The dashed line
corresponds to using the ZMNL pre-processor. The ZMNL
is particularly useful for @ > 0.5; is performance can be
improved by using alpha-adaptive estimates of the clipping
level. We repeated the simulation with random phases, in-
stead of random amplitudes; results are shown in the bot-
tom panel of Fig 4. Note that the GSNR is 0 dB for both
cases.

7. CONCLUSIONS

One objective of this paper was to introduce the reader to
some rather interesting results on the convergence rates of
the normalized correlation sequence of an SaS ARMA pro-
cess, and to demonstrate that correlation-based techniques
vield unbiased and low-variance estimates of the SEMP
ARMA model parameters. Further, we showed via simu-
lations that the normalized higher-order moments and cu-
mulants are also well behaved. Energy normalization and
simple ZMNL pre-processing were also seen to be useful for
estimating the parameters of a harmonic process observed
in SoS noise. We saw that estimates of the covariation ap-
pear to show much more variability than the correlation;
this, perhaps, explains why covariation-based methods ap-
pear to need relatively larger amounts of data.
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Figure 3. Correlation-based ESPRIT estimates
with (dashed) and without (solid) ZMNL pre-
processing. (a) Top: random amplitudes; (b) Bot-
tom: random phases. Standard deviations are
shown as a function of a.

Further extensions of the theory, and applications to the
estimation of time-delays, frequency offsets, direction of ar-
rival, and linear system parameters of/in SaS noise, with
0 < a <2 (not just 1 < a < 2) may be found in [10}, where
Cramer-Rao bounds are also established.
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