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ABSTRACT

A new adaptive subspace estimation algorithm is presented,
based on the maximisation of the likelihood functional. It
requires little computational cost and the particular struc-
ture of the algorithm ensures the orthonormality of the esti-
mated basis of eigenvectors. Application to moving sources
localization shows the very good behavior of the algorithm
when applied to problems of practical interest.

1. INTRODUCTION

Let X = (Xn)nez be a vector, complex valued, stochastic
process (X, € CV). In signal processing, the computation
(or estimation) of the EigenValue Decomposition (EVD) of
the hermitian covariance matrix Rx,n = E {X¥X.} has
been intensively used in different applications. In partic-
ular, Direction Of Arrival (DOA) estimation (MUSIC al-
gorithm, e.g. [11]), frequencies estimation, blind channel
impulse response estimation [8] or vector quantization [13],
are classical applications in which this problem arises.

If the process X is stationary, Rx,, = Rx can be esti-
mated easily, and there exist in the literature several itera-
tive methods to perform its EVD. Among these methods the
orthogonal iteration, that requires a QR algorithm at each
iteration is currently used [7]. Unfortunately, in many ap-
plications (moving sources, time varying transmission chan-
nels,...), the process X under study is not stationary, and
the above approach cannot be applied directly.

To overcome this problem, several studies have been
carried out during the last decade. First, straightforward
extensions of the stationary case to the non stationary case
have been proposed (e.g. [5]). They rely on adaptive es-
timation of the instantaneous covariance matrix Rxn by
means of a smoothing technique, yielding estimates such as

Ex,n =(1- a)ft’x,,._l + ar,.:r:,.H (1)

where o is a forgetting factor, 0 < a < 1, and z, is the
observed data vector at time n. Then, one iteration of the
classical orthogonal iteration EVD method is performed,
that makes use of the EVD performed at the previous step,
and of the covariance matrix Rx,». The computational cost
of such an approach is in general O(N?K), where K is the
number of estimated eigen-vectors.

To reach lower computational cost, several authors pro-
posed to replace in (1) the estimated covariance matrix by

Copyright 1997 IEEE

its eigenvalue decomposition (e.g. [4, 3]). In ([4]), some
simplifying assumptions (the space is splitted into only 2
eigensubspaces, in view to obtain basis of the so-called noise
and signal subspaces) permit to get an algorithm with com-
putational cost in O(NK'). This algorithm makes use of
Householder reflections matrices. By means of a Givens
rotations-based algorithm, and other simplifying hypoth-
esis, [3] presents an O(NK') algorithm that ensures com-
plete eigenvalue decomposition, and perfect orthonormality
of the estimated eigenvectors.

Alternatively, another approach consists in using some
constrained or unconstrained criterion, the optimum of which
corresponds to the EVD of Rx,,, and optimize it by means
of some stochastic gradient-like algorithm [9, 13, 10]. These
stochastic algorithms have various computational cost :
O(N?K) for Regalia’s Givens rotations-based algorithm [9],
with exact orthonormality of the estimated EVD, O(NK?)
in [10], where only approximate orthonormality is ensured,
as well as for Yang’s O(NK') RLS algorithm [13]. But for
this last algorithm, an additional orthonormalization proce-
dure is often necessary to get satisfactory results in practice
(at the expense of O(N K?) additional operations).

In this paper, a fast adaptive eigenvalue decomposition
is presented. It relies on the optimization of a log-likelihood
functional by means of a stochastic gradient algorithm, that
incorporates the orthonormality constraint upon the eigen-
vectors. Its computational cost is in the order of O(NK).

The paper is organized as follows. In section two, the
maximum likelihood approach is presented, and in section
three, the algorithin is derived and its convergence proper-
ties and asymptotic variance are studied. The last section
is devoted to simulations and comparisons with other meth-
ods.

2. PROBLEM STATEMENT AND ADAPTIVE
MAXIMUM LIKELIHOOD

In many problems, the observed data model at time n is in
the form

X, = HuSn + Ba, (2)

where X, is a random N—vector, and S» a random p—vector
(p < N), with full rank covariance matrix. By, is an additive
noise N —vector uncorrelated with S, , and with covariance
matrix is 02 In (Ix is the K x K identity matrix). H, is a
full rank, time-varying N X p matrix.
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The problem is to estimate H,, or some of its parame-
ters of interest, out of the knowledge of the space spanned
by its columns. Clearly, getting this vector space amounts
to estimate the space spanned by the eigenvectors associ-
ated to the largest eigenvalues of Rx,n = E[XnXF]. Also,
the complete knowledge of the EVD of Rx . is often inter-
esting, for instance to estimate the possibly unknown range
of Hy, (see e.g. [6, 12]).

Let Rx,n = UnAnU¥ denote the EVD of Rx,n. As-
suming that X, is a zero mean complex valued gaussian
random vector, the probabilty density function (p.d.f.) of
X, is parametrized by U and A, that represent the matrix
of eigenvecors and the diagonal matrix of the eigenvalues,
denoted (Ai)k=1,~, respectively. This p.d.f. is given by

f(@n;AU) = 1. UA"U”x,.)

1
IR UNDH] P (— 2
(3)

Up to additive and multiplicative constants that have been
dropped, the opposite of the corresponding log-likelihood is
given by

N
& (zn; A U) =) log (M) + 20 UAT Uz, (4)
k=1
The minimization of the “distance” criterion K, (A,U)

= E[®(zn;A,U)] can be searched adaptively by means of
the following stochastic gradient algorithm :

Yn = Uf__l.’l:n (53)
An = Apoy—p (A:.l.l - A;.z_ldiag(ynyf)) (Sb)
Un = Unor—pA7lznyr. (5¢)

where diag(ynyf) is a diagonal matrix with diagonal terms
matching those of y.yZ. Unfortunately the convergence
properties of this algorithm are not satisfactory. Indeed, let
us consider for instance the equation of actualization of Up,.
A stationary point (A,U) should satisty E[AT!XX¥U] =
A 'RxU = 0. Obviously, the EVD of Rx does not match
this constraint.

3. CONSTRAINED ADAPTIVE MAXIMUM
LIKELTHOOD

To overcome the above mentionned problem, we will modify
the previous algorithm by accounting for the orthonormal-
ity constraint upon the eigenvectors, in the computation of
the gradient of ® (z,;A,U). We will show the good proper-
ties of the corresponding algorithm. In particular, we will
show that it produces exactly unitary estimates at each it-
eration. Moreover, we prove its convergence towards the
EVD of Rx,n and study the asymptotic variance of its es-
timate.

3.1. Derivation of the MALASE algorithm
Let us consider the following differential of & :

du® (2, A U) = ® (2 A, U+ dU) — & (z,;A,U)  (6)
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Under the unitary constraint U¥U = Iy, we have dU¥ =
—UHQUU®, and first order differential yields :

dy® =¥ (dUAT'U® + UA'dUH) 2, R
= —y¥ (A-WUHAU —URAT'dUH) y,

From this expression, the matrix 2% ‘;I}A’U , with general
8@!1,.;1\ U! _ 8&!3,,;/\ U! 3 .
term [ e = 6U|‘j’ is given by

4,

92@niAU) _ A=ty 4+ Uyny A~ (8)
U
This yields the following stochastic algorithm :
Yn = U:I—ll'n (9a)
An = Ani—up (Ar—;—l-l - A,',Zldiag(y,.yf)) (9b)
Up = Un2 (I +u (A,',llynyf - ynyfAZl1)) (9c)

where diag(yny¥) is a diagonal matrix with diagonal terms
matching those of ynyll. This algorithm has been bap-
tized MALASE (MAximum Likelihood Adaptive Subspace
Estimation). The computational cost of this algorithm is

O(NK).

3.2. Convergence properties

To study the stationary points (A, U) of the algorithm, let
us recall that they satisfy the equations :

h(A) = A™' = AT?E[diag(YY™)] (10)
= A7'— A" diag(U¥ RxU)
= 0

ha(U)

i

E {U (A-‘YY” - YY”A")} (1)
= U(ATU"RxU - U" RxUA™)
0

One can easily check that a necessary and sufficient condi-
tion for A to be a stationary point is that [A);; = UHRxU;,
and that the matrix U¥ RxU is a block diagonal matrix
where any block has all equal diagonal terms.

To study the stability, we consider perturbations of the
stationary point (A, U). More particularly, we consider mul-
tiplicative perturbations in the form of Givens rotations
(U+dU = UG, where G is a Given’s rotation), and this per-
mits to show simply that a necessary condition for stability
is that U¥ RxU is a diagonal matrix. This shows that only
eigenvalue decompositions may represent stable points.

Furthermore, we account for the important fact, proved
in the following, that if U, is unitary, the matrix Unj,
is also unitary (up to a second order term in u). Thus,
since the stability of the the eigenvalue decomposition is
ensured for Given's rotations multiplicative perturbations,
and since such matrices parametrize all matrix transfor-
mations on the sphere of unitary matrices, the stability of
eigenvalue decompositions is guaranteed. Thus, we have :

Proposition 1 the point (A,U) is a stable point of the al-
gorithm (9) iff it represents the EVD : Rx = UAU¥.
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3.3. Orthonormality properties

To show the unitarity conservation property of MALASE
algorithm, let us recall first a straightforward property of
skew-symmetric matrices (i.e. matrices A such that A =
—A) : for any such matrix A,

exp(A) x exp(A¥) = Iy, (12)

i.e. exp(A) is unitary. Now, let us remark that the actuali-
sation of U in (9) can be rewritten as

Un = Unc1 ¥ exp(u[A7 L jynyl ~ ynyH ATL]) + O(uZ) )
13

and that the matrix
- H,-
Anlly"yf — Yn¥n An-l-l (14)

is skew-symetric. Thus, if Up is a unitary matrix, up to the
second order in u, the sequence of estimated matrices U,
produced by the algorithm M ALASE will be unitary.

Let us point out that the previous remark suggests a
new algorithm for which exact ortonormality will occur at
each step, provided Up is unitary. This algorithm is ob-
tained by replacing equation (9c) in MALASE by :

Un = Un-1 exp (I‘[A;llynyf - yﬂyv{{A;lI]) . (15)

Although it might seem to be quite difficult to compute
the exponential matrix that appears in this algorithm, the
following straightforward result

uvH uv

€ =1+ H}:‘ (e("H") - 1) Yu,v e CV, (16)

yields in (15):

Un = Un—l X (17)
B A7 yny¥
- o) - 552
- nym A7
X [I+ (eXP (_I‘yrll{A'lly") - 1) Z,Il{yl\;lyn]

where only a scalar exponential computation is involved.
This shows that this algorithm has a computational cost of
O(NK). Since this algorithm only differs from MALASE
by a factor O(u?), they both yield similar results.

3.4. Asymptotic performances

From ([2], p. 103), we know that the asymptotic covariance
matrix of the vector parameters estimated by a stochas-
tic gradient algorithm can be estimated by solving a Lya-
pounov equation. Let us consider the (N? + N)-vector
H=[Uf..UF X\ ...AN]T where Uy denotes the k! col-
umn of U. Then, for MALASE algorithm, the asymptotic
covariance matrix of the error of estimation of H is the
(N? 4+ N) x (N? + N) matrix given by

1
P=uzlysn (18)

This is a very interesting result since the asymptotic vari-
ance depends only on y, and not on the eigenvalues of Rx,
as in other algorithms (e.g. [10]). Furthermore, let us re-
mark that any of the N24 N partameters are asymptotically
uncorrelated, and have the same varianceu 15
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4. APPLICATIONS AND COMPARISONS

Let us remark that the algorithm MALASE has a structure
close to that of the algorithm PROTEUS-1 [3]. The latter
differs from MALASE by the fact that A, is obtained from a
minimum mean square error criterion (|| A —U# Rx U ||),
and that Up = Un—1 x exp(©n), where the skew matrix
O, satisfies [On)i; = Byn,ivn ;/(An—1,i — An_1,5), instead
of [Onli; = tyn,iyvn ;(1/An-1,i — 1/An-1,;) for MALASE.

Furthermore, the PROTEUS-1 algorithm requires
O(N?K) multiplications. It can be approximated to get the
O(NK) PROTEUS-2 algorithm. Together with MALASE
these are the only algorithms that ensure O(N K') computa-
tional cost and perfect orthonormality of the eigenvectors.
However, since PROTEUS-2 is obtained thanks to simplify-
ing asumptions, we checked that this results in worse results
than for MALASE in practical non stationary situations, as
shown figure 1.

We checked the efficiency of the proposed algorithm
to locate and track moving sources, and compared it to
Proteus-1 and S. Affes’ method [1]. At each instant n, we
update the sources positions ¢in as in [10] and deal with
crossing sources by means of a kinematic model (see [1]).
The step is 151 = 0.01 for our algorithm and Proteus-1, and
p2 = 0.005 for S. Affes method. These values have been
chosen in order to guarantee optimum tracking capability
in the context of our simulations. Two moving crossing
sources sl and s2 are tracked over 10,000 iterations using
an array of N = 16 sensors. We assume the presence of
a white noise with SNR = 5dB. The time averaged bias
b = E{e} and standard deviation ¢ = [E {|e —b|2}]1/2
of the estimated location € = ¢ — @ are computed. We
check in table 1 that our algorithm stands the comparison
to PROTEUS-1. Affes’ method appears to show better re-
sults. But it requires the use of a kinematic model, the ad-
justment of which is not straightforward. Furthermore, for
problems where non Toeplitz hermitian matrices are con-
sidered (e.g. blind deconvolution of mutli-channel digital
communications signals), it cannot be used any longer.

Finally, a zoom over 1000 iterations is displayed on
figures 2 and 3, showing the similarity of performances
between MALASE (O(N K)) and PROTEUS-1 (O(NK?))

methods.

b o
sl 82 sl s2 |
Proteus-1 | 0.24 { 0.30 | 0.36 | 0.41
MALASE | 0.22 ] 0.27 | 0.33 | 0.38
S. Affes 0.08 {1 0.10 | 0.18 | 0.19

Table 1: Bias and Standard Deviation of
the error of estimation, in degree, over
10000 iterations.
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Figure 2: Tracking of two moving sources - Dashed line :
true position ¢ - Solid line : estimated position @ - SNR =
5dB.
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Figure 3: Tracking of two moving sources - Dashed line :
true position ¢ - Solid line : estimated position ¢ - SNR =
5dB.
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