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ABSTRACT

Given a linear stationary non-Gaussian signal, suppose
that we fit a linear model using higher-order statistics and
one of several existing methods. The model is fitted under
certain assumptions on the data and the underlying (true)
model. Having obtained a model, how do we know if the
fitted model is “good?” This paper is devoled to the prob-
lem of model diagnostics and validation. We propose some
simple frequency-domain tests that are applicable to both
third-order and fourth-order statistics-based model fitting
unlike existing tests. A computer simulation example is
presented to illustrate the proposed tests.

1 Introduction

The area of parametric modeling via higher-order
cumulant functions has attracted considerable atten-
tion in recent years [3],[4]. Use of higher order statis-
tics allows one to identify noncausal as well as non-
minimum phase finite-dimensional parametric models
from system output measurements alone (blind iden-
tification). Most of the published papers thus far have
concentrated upon various aspects of parameter esti-
mation and model order selection including algorithm
development and analysis. It appears that only [1]
has addressed the problem of model validation. This
paper is devoted to the problem of model validation
using higher order statistics which is appropriate when
the model has been fitted using higher order statistics.
Model validation involves testing to see if the fitted
model is an appropriate representation of the under-
lying (true) system. It involves devising appropriate
statistical tools to test the validity of the assumptions
made in obtaining the fitted model.

Given the data and an appropriately fitted linear
model, in order to validate tlr;e model, we first inverse
filter the data using the fitted model. Then the linear
model validation problem is cast into a classical binary
hypothesis testing problem. Under the null hypothe-
sis that fitted model generates the data, the inverse
filtered data is an i.i.cf. non-Gaussian sequence, pos-
sibly contaminated with a colored Gaussian noise se-
quence. Under the alternative hypothesis that the fit-
ted model does not describe the given data, the inverse
filtered data is a colored non-Gaussian sequence, pos-
sibly contaminated with a colored Gaussian noise se-
quence. The model validation test considered in {1] is
based upon testing for constancy of the bispectrum of
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the inverse filtered data. It is restricted to third-order
statistics-based model fitting. In this paper we use
some simple frequency-domain tests using integrated
polyspectra [5] that are applicable to both third-order
and fourth-order statistics-based model fitting.

2 Model Assumptions

Let {s(t)} denote a stationary ARMA(p, gq) signal
given by

P g
Zags(t—i) = Zb,-'w(t—-i), ap:=1, bo:=1
=0

i=0
(2-1)
The measurements of the signal are noisy
z(t) = s(t) + v(t). (2-2)
The input {w(t)} is not observed. The following con-
ditions are assumed to hold.

(H1) A(z) = ¥ oaiz™* #0 for 2| > 1.
(H2) B(z) = X1 o biz™* # 0 for |z| = 1.

(H3) The random sequence {w(t)} is i.i.d., zero-
mean and non-Gaussian such that its »—th
cumulant v, is nonzero for either » = 3
and 4 or r = 4 and 6. Moreover its mo-
ments up to order twelve are assumed to

be bounded.

(H4) The zero-mean noise {v(t)} is independent
of {w(t)} and is colored Gaussian such that
lcov{v(t1),v(t2)}| < MpB*—*l for some
0<M<ooand 0 <8 <1, and for all
t; and 3.

Condition (H1) can be relaxed to (H1'): A(z) # 0
for |z] = 1. Several schemes are available in the lit-
erature to estimate the unknown parameter vector 8
= (a1, -*,ap, by, -+, b,) given a sample sequence of
observations Xy = {z(t), 1 <t < N} [1],[3],[4].

3 Model Diagnostics and Validation
The basic premise of the proposed model diagnos-
tics and validation procedures is just as in [1]. Sup-
ose that we fit a linear model to the noisy data
ased solely upon the third-order or the fourth-order
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cumulant sequence of {z(t)}. Let 8 denote the pa-
rameter vector for a linear model that is to be val-
idated given Xxn. Let {h(3;8), i > 0} denote the
impulse response of the model parametrized by 8. Let
{g(i), —o0 < i < oo} denote its inverse such that
o oo G()R(i — 1;0) = 6(3). Because we can not re-
solve the ambiguity concerning the scale factor and
time shift of the true impulse response, it follows that

T o G(DR(i — 1;60) ~ ¢b(i — i) where ¢ and o
are some constant and integer, respectively, and 6y
denotes the true parameter vector. Define

o0 o0

v'(t) := Z gE(t — 1), &) := Z g(3)s(t — 1),
z'(t) = Z g(d)z(t - ). (3-1)

Under the null hypothesis Hy that the fitted model fis
the true underlying model, we have s'(¢) = cw(t — ip)
and v'(t) is Gaussian.

Thus, after linear inverse filtering, we have a clas-
sical binary hypothesis testing problem:

Hy : z’(t) = cw(t—io) + v’(t), t=1,2,---,N,

Hy: 2'(t) = @) + (%), t=1,2,---,N,

(3-2)
where N is “large” and under the alternative hypothe-
sis Hy, {s(t)} is some other linear or nonlinear process,
therefore, {s'(t)} is also a non-i.i.d. random sequence.
The test statistic discussed in [1] is based upon testing
for constancy of the bispectrum of the filtered mea-
surements. In this paper we propose to use two slices
of higher-order cumulant sequences of the filtered mea-
surements to test for higher-order whiteness of {z'(t)}
under Hg.

3.1 Third-Order Statistics-Based Fitting
Consider the following two slices of cumulants of

{='(t)}:
Caor(7) = E{yae(t)e'(t + 7)}
Caa(7) 1= E{ysar(t)2'(t + 1)}
e (t) = 2(t) - B{="(t)}
yaor(t) 1= 23(t) — 3E{z"(t)}='(t) —E{z’s((ts)}_. \
It then follows that
Caar(T) = cums{z'(t),(t), z'(t +T)},

Cazi(1) := cumy {z'(t),2'(£), 2'(t),z'(t + 1')3} .

(3-3)

where

(3-5)

It is easy to see that under Hy, Cazp(7) = 0 =
Caz'(T) V7 # 0. An important result is the converse
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of the preceding statement.

Lemma 1. Let {2'(t)} be as in (3-1) with {g(s)}
denoting the impulse response function of a stable ra-
tional transfer function. If Cai(1) = 0 = Cyp(7)
V1 # 0 where {2'(t)} obeys (2-1),(2-2) and (3-1), then
2/(t) = cw(t—1ip) + v'(t). e

Proof: Let S,(z) denote the Z-transform of the se-
quence {Crz/(7)} (r=3 or 4). The hypothesis of the
lemma implies that

83(2) =C

and Sa(z) =cz Vz B-17

where ¢; and c; are some constants. Let the transfer
function of the overall concatenated system comprised
of the original system followed by the inverse filter
with w(t) as input and z'(t) as output, be denoted by
H(z). Then it follows that

S3(2) = vswHa(z)H(z),
S4(2z) = YawHs(2)H(2) (3-9)

where 7., denotes the r—th cumulant of the random

(3-8)

variable w(t) and where if H(z) := Y oo__ h(i)z7%,
then

Hy(2) := .Z R3(3)2~* (3 —10)
and -

Hy(z):= Y h*(i)z7" (3-11)

i=—o00

It also follows from the hypotheses of the lemma that
H(z) is a stable, rational transfer function. It further
follows from (3-7)-(3-11) that, for some constant d(#
0), we have

ng(z) = H3(z) Vz

= Y h(i)d- k(i) =0 V2

= h*(i)[d — h(3)] = 0 Vi. (3-12)

Therefore, either k(i) = 0 or k(i) = d for any given 1.
Two cases arise:

Case A. h(i) = d for infinitely many ¢’s. This implies
that H(z) is unstable — a contradiction.

Case B. h(i) = d for finitely many i’s. This implies
that H(z) is FIR (finite impulse response). Let ir
and ig > iy be two integers such that k(i) = 0 for
any 1 < iz and for any i > ig but k(i) # 0 and
h(ig) # 0. Then we have

Csz'(iH - 'LL) = '73wd3

which violates a hypothesis of the lemma unless iy =
ir, in which case H(z) = dz™** yielding the desired
result. O

Thus, higher-order whiteness of two cumulant slices
of respectively different order cumulants implies that
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Hy is true. [It appears that Caz:(7) = 0 V7 # 0 alone
does not necessarily imply Ho.]
Define (r = 3 or 4)

Srar(@) = Y Cra(T)e™%7 = S(ef).

T=—00

(3 - 13)

The above quantities have been called integrated
polyspectra in [5]. Lemma 2 then follows trivially from
Lemma 1.

Lemma 2. Let {2'(t)} be as in (3-1) with
{g(3)} denoting the impulse response function of a
stable rational transfer function. If Sa./(w) =
and Ssg'(w) = c2 Yw where ¢; and c; are some con-
stants and {2'(t)} obeys (2-1),(2-2) and (3-1), then
z'(t) = cw(t—1) + V(). e

Thus, constancy of two integrated polyspectra of
respectively different orders implies that Hy is true.
Our proposed test for the binary hypothesis testmg

problem (3-2) is based upon Lemma 2.

Given {z'(t), 1 <t < N}, calculate {yz2r(t), 1 <
t < N} and {ysz’ (t), 1 <t < N} replacing expecta-
tions in (3-4) with appropriate sample averages. Let
X'(w) denote the DFT of {z'(t), 1 <t < N} given
by

N-1
X'(wi) = Z z'(t + 1)exp(—jwet), (3—14)
t=0
Wy = l—v-k, k=0,1,---,N-1. (3—15)
Similarly define Yz./(wg) and Yzz/(we). Given the

above DFT’s, define the cross-spectrum (integrated
polyspectrum [5]) estimators as

Ssar (k) = mt_ng (Wh-i)¥5or (We—i),
(3 — 16)
§4=I(k): 2m n 1) Z wk -1 Y3= (wk "')

i=—mpy

(3-—-17)

Let us choose my to be such that as N — oo, we have

myN~! — 0 and my — oo. In light of (3-16) define
a coarser frequency grid:

2zl 2xl(2mpy + 1)

o= 7 (3 - 18)

l =
with 1 = 0,1,-+-,Ly — 1 where Ly = |gocq)- It
then follows from [7] that asymptotically,

Saar (k) ~ N'© (Saet(wh), Ay Sarar (i) Saa(wi) ,
(3-19)
~ N€ (54::'(“’1«-.)’ AJ—Vlst't'(wk)s33(wk))
(3 = 20)

Saer (k)
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where Ay = 2my + 1, N¢(,0?) denotes a complex
(circularly symmetric) Gaussian [7] distribution with
mean p and variance o2, and S;2(w) and Sa3(w) de-
note the power spectra of ya,/(t) and ysg(t), respec-
tively. Moreover, the estimators §3,:(k) for various k’s
on the coarse grid (3-18) are asymptotically mutually

independent. The same is true for Ssz/ (k).
Pick P points on the coarse grid (3-18) in the inter-
val (0, 7); call this set 2p. Define the vectors/matrices

~ —~ T
Raw = [ Sorll), 1e00p |, (3 —21)

~ - T
Re = | Surll), 1e0p |, (3 — 22)
Y3 := cov {ﬁg,r} = a diagonal matrix, (3 — 23)

4 = cov {ﬁ4,:} = a diagonal matrix. (3 — 24)
Consider a (P — 1) x P matrix D defined as

1 -1 o0 0
0 1 =1 --- 0

D:=|. . . . .. (3 —25)
0 0 ... 1 -1

Under Hg (cf. Lemma 2), asymptotically DR, ~
N9(0,DE3DT) and DR4yr ~ N(0,DE,DT). Let
%, denote a consistent estimate of X, (r = 3 or4)
obtained by using estimators similar to (3-16) in (3-

19) and (3-20). Then by [2, Lemma B.4)], under Ho,
asymptotically

(DR3./)(DE:DT)"YDRs,r) ~ x*(2P - 2),
(3 = 26)

(DR )(DEDT) YDR4r) ~ x3(2P - 2).
(3-127)
The preceding discussion suggests the following
simplified (sub-optimal) test procedure for hlgher-

order whiteness. Accept Hp if the following two in-
equalities hold true:

(DRaz)*(DEDT) Y (DRa) < Ty,  (3-—28)

(DR4 ) (DEDT) (DRax) < T (3-29)

else reject it, where T, is the threshold corresponding
to a significance level o, i.e., Pr{Y > T, } = o where

Y ~ x?(2P - 2).
3.2 Fourth-Order Statistics-Based Fitting

Now consider the cumulants slices Cyy(7) and
Cez(7) of {2'(t)}:
Cez' (1) = E{ys'(t)z'(t + 7)}
@' (t),2'(t+ 1)}

= cumeg {z'(t),- - (3-30)
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where
Ysar () = s (t) — E{ysar (1)},

V(1) 1= 23(t) - 10B{="(1)}a"(t)

+ [30(B{="()})* - 5E{="(1)}] ='(2).
(3 - 32)
Under Hy, Cyz/(T) = 0 = Cezt(7) VT # 0. A converse
just as in Lemma 1 also holds true. Using (3-13) the
counterpart to Lemma 2 is

Lemma 3. Let {z(t)} be as in (3-1) with
{4(?)} denoting the impulse response function of a
stable rational transfer function. If Ssi(w) = ¢
and Sez'(w) = ¢z VYw where ¢, and c; are some con-
stants and {z'(t)} obeys (2-1),(2-2) and (3-1), then
z'(t) = cw(t— 1) + V(t). o

Proof of Lemma 3 mimics that for Lemma 2; it is

omitted.
With obvious notation, define as in (3-17),

(3-31)

Y X (wri) Ve (wrs)-

=—mxyN

~ 1
SG::'(k) = m ‘.

(3-33)
Then we have

Sezr (k) ~ NC (Secr(wi), Ay' Szrar (wi ) Sss(we))
(3 ~ 34)
where Sgs(w) denotes the power spectrum of ys.r(t).
Define the vectors/matrices

~ —~ T
R = | Seur(l), 1€0p ] , (3 ~ 35)

Y6 = cov {ﬁezn} = a diagonal matrix. (3 — 36)

Mimicking the developments in Sec. 3, we have: Ac-
cept Hp if the following two inequalities hold true:

(Dﬁ4”')%(D§4DT)_1(Dﬁ4=') < Ty, (3 - 37)

(DR, )% (DEeDT) }(DReer) < T (3 38)

else reject it, where T, is the threshold corresponding
to a significance level o for a x?(2P — 2) distribution.

4 Simulation Example

We will illustrate the proposed model diagnostics
and validation approach Ey using it for model order
selection, as in [1]. The signal s(t) is ARMA(2,1) with
either zero-mean, i.i.d. binary (+1 with probability
0.5 each) driving sequence {w(t)} or zero-mean, i.i.d.
one-sided exponential {w(t)}, and noise is zero-mean,
white Gaussian:

s(t) = 0.8s(t— 1) — 0.52s(t — 2) + w(t) — 1.5w(t—1).

We fit AR(p,¢) models for p,g = 0,1,---,6 using
cumulant matching (third-order for exponential and

Copyright 1997 |IEEE

fourth-order for binary)[1]. The “smallest” (p,q) for
which the fitted model can be validated is declared
the correct model order; see [1] for exact details. To
apply the tests (3-37)-(3-38) (binary case) or (3-28)-(3-
29) (exponential case), we selected a = 0.01 and used
various record lengths N and SNR’s. The smoothing
window sizes 2my + 1 were 11, 21, 45 and 89 for N =
1024, 2048, 4096 and 8192, respectively. We used all
the points on the coarse grid in the interval (0, 7) to
select P. Results of 100 Monte Carlo runs are shown
in Table 1 for exponential input and in Table 2 for
binary input.

TABLE 1: Exponential w(t)
No. of times the correct order
(p,q) = (2,1) is selected out of 100 runs
(N = record length)

SNR — [ 30dB | 20dB 10dB
N
1024 96 97 88
2048 98 98 100
4098 99 100 100

TABLE 2: Binary w(t)
" No. of times the correct order
(p,q) = (2,1) is selected out of 100 runs
N = record length)

SNR —- [ 30dB | 20 dB 10 dB
N
2048 83 82 63
4096 91 92 88
8192 96 97 93
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