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ABSTRACT

We consider a frequency-domain solution to the least-
squares equation error identification problem using the
power spectrum and the cross-spectrum of the IO (input-
output) data to estimate the IO parametric transfer func-
tion. The proposed approach is shown to yield a unimodal
performance surface, consistent identification in colored
noise and sufficient-order case, and stable fitted models
under undermodeling for arbitrary stationary inputs so
long as they are persistently exciting of sufficiently high
order. Asymptotic performance analysis is carried out for
both sufficient-order and reduced-order cases. Computer
simulation results are presented to illustrate the proposed
approach.

1 Introduction
Consider the following widely used input-output linear
system model:

¥(t) = H(q)u(t) + v(t) (1-1)

where {u(t)} is the measured input sequence, t is discrete-
time, {y(%)} is the noisy output, and {v(¢)} is a measure-
ment noise (disturbance) sequence. With ¢~! denoting the
backward-shift operator (i.e. g~ u(t) = u(t—1)), the linear
system H(g) represents an IIR (infinite impulse response)
system:

oo
H(q) = D k(i)™ (1-2)
=0
Given an input-output record {=(t),y(¢), t = 1,2,---},
but the underlying true system model H(gq) unknown, it
is of much interest in control, communications and signal
processing applications to fit a rational function model

_ B(g) _ X b
la) = Alg) — 1+ Y0 aig—

to given input-cutput record [1]-[6],{8]. A wide variety of
approaches exist [1],[4],[5],[8]

The main objective of this paper is to provide a
frequency-domain solution using spectral analysis to the
problem of equation error (least-squares) system identifica-
tion given time-domain input-output data. The proposed
method is shown to lead to:
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¢ Global convergence (unimodal cost function) since we
have a cost quadratic in the unknown parameters.
This is unlike PEM (prediction error method) and
OEM (output error method) [4],[5].

o Consistent estimates in the sufficient order case even
when {v(t)} is colored. This is unlike the EEM (equa-
tion error method) of [1] which requires the noise to
be white.

o Asymptotically stable fitted model in the reduced or-
der case for arbitrary stationary inputs so long as
they are persistently exciting of sufficiently high or-
der. This is unlike PEM, SSM (Steiglitz-McBride
method), FEM and IVM (instrumental variable
method). In particular, ARMA inputs are included
unlike [1].

Model Assumptions

We impose the following conditions on (1-1):

(AS1) {u(t)} and {y(t)} are zero-mean and jointly
stationary. The power spectral density (PSD)
Suu(w) of {u(2)} is > 0 for almost all w € {0, x}
if the proposed approaches utilize the entire fre-
quency range [0,7]. If a finite number of fre-
quencies are used then Syu.(w) need be nonzero
only for this frequency set.

(AS2) The true system transfer function H(q) is causal
and stable. Therefore, 3 7° h*(i) < oco.

(AS3) The noise sequence {v(t)} is sero-mean, station-
ary and independent of {u(t)}.

(AS4) The following summability conditions hold true:

oo

Yo HmCn sy ht)| < 0o,

T1, 1 Th—1=—00

for each j = 2,--.,k — 1 and each k =
2,3,--- where zi(t) € {y(2),u(t),v(t)} and
Cziz3-2,(T, -, Th—1) i8 the k-th order joint
cumulant of the random variables {z:(t +
1‘1), [ ,z;._l(t + Tr—1 ), z;.(t)}.

Let the vector of unknown parameter be given by

6 =[ay - an, bo -+ bn,]7. (2-1)
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3 A Frequency-Domain Solution

Consider the cross-spectral density

o0

Sp(w) = Y Bly(t+RBu(t)}e*.  (3-1)
It then follows easily that
H(ejw) = H(q)|gzesw = gﬁ{% (3-2)

The basic approach to model parameter estimation con-
sists of two steps. First obtain a consistent estimator
H(e™) of H(e’™) via consistent estimators 5yu(w) and
Ew(w) of Syu(w) and Suu(w), respectively, based upon the
input-output record {u(t),y(t), t =1,2,---,T}. Next es-
tirnate the system parameters using the estimated transfer
function matrix as “data.”

3.1 Transfer Function Estimator
Given a record of length T, let Y(w) denote the DFT
of {y(t), 1 <t< T} given by

T—-1
Y(wn) = ) y(t+ 1)exp(—junt), (3-3)
t=0
2r
wr = ?"k’ k=0,1,---,T-1. (3-14)

Similarly define U(ws). Given the above DFT’s, follow-
ing [7, Sec. 7.4] we define the cross- and auto-spectrum
estimators as

Syu(k) = ﬁm—iﬁ‘:; Y (wn—i)U" (wh—:), (3-5)
o) = iy 2 0 e (29

Let us choose mz to be such that as T — oo, we have
mzT™' — 0 and mr — oo. Let ky(T) with T = 1,2,---
be a sequence of integers such that limr_,o ki(T)/T = fi,
a fixed frequency (in Hz). In light of (3-5) define a coarser
frequency grid:

(3-7)

o 27l _ 2mi(mz +1) _ 2¢l(2BrT +1)
A P T = T

with I = 0,1,-..,Ly — 1 where Ly = I-Z_r-n%J Using
the estimated spectra we have an estimator of the system
transfer function at frequency wx (as in [7, Chapter 8])

(3-9)

provided that §;,}(k) exists. If Spi(ws) exists, then it
follows from [7, Thm. 8.11.1] that

A(e3*) = 85t (k)Syu(k)

limT_.ooI?(ejz"!) =limr.e §;1} (k(T))§vu(k(T))

= H(*™) wpl (3-9)

NArvvvisairdy 1007 IECECE

where limr_, o k(T)/T = f. Convergence in (3-9) is uni-
form in f.

As before, let ky(T) with T = 1,2,.-- be a sequence
of integers such that imr_ o ki(T)/T = fi. We
may take these integers to belong to the coarser grid
{k|k=1l2mzr+1), 1=0,1,..-,(Lr/2)—1}. Consider
a fixed set of M frequencies A; forl =1, 2,--., M such that
0< A €A €+ < Am < 7, where \; = 2xf;. It fol-
lows from [7, Thm. 8.8.1] (see also [7, Thm. 7.4.3] and {7,
Cor. 7.4.3]) that, for large T, HEeM) forl=1,2,---\ M
are (asymptotically) jointly complex (circulatly symmet-
ric) Gaussian such that for large T'

= A P () 6(k—1) + O(T™),
(3 — 10)
(3-11)

cov (ﬁ(e”"), H(e™ ))

cov (ﬁ(e’.l"), H* (M )) = O(T™)
where Ar =2mr + 1,

o) = S [,

ISW(/\;.)I:!
sw(xu)sw(xk)] - (3-12)

and cov{X,Y} = E{XY*}-E{X}E{Y"}. Thus, H(e“*)
on the coarse grid (3-7) is asymptotically a complex Gaus-
sian (in the sense of [7, Sec. 4.2]) random variable, indepen-
dent at distinct frequencies on the coarse grid over (0,7),
with the covariance structure (3-10).

Remark 1. In the rest of the paper we will use
wy to denote a frequency on the coarse grid (3-7) with
k=0,1,.--,Ly — 1 but we will use Ax to denote a fixed
frequency independent of the record length T. o

3.2 An Equation Error Formulation
Choose § to minimize the cost

M
. -~ . . 2
Tr(6: M, 0z, ) = 22 3 |A(e1*t;e)H(e1*l) — B(e™;6)

i=1

(3 —13)
where 0 < Qr <A1 <A < - <A < v < 7,
ny
B(e™;6) = ) (e, (3-14)
i=1
Mg
AEM;0) = 1+ ) ai)e™ (3 — 15)

i=1
Proof of the following result is omitted.
Lemma 1. (A) Under (AS1)-(AS4) such that
0 € 0L £ A& € A2 < < Am £ Qu £ =,
BmpeoJir(8; M, 01, Qu) “Z" Jica(8; M, 01, Qu) uni-
formly in 8 for 8 € O¢, any compact set, where

M
Jieo(6; M, 02, 00) = 2 3 |43 ) H() - B 0)[
I=1

(3 - 16)
(B) In addition, let the set of frequencies above
become dense in the interval [Qz,Qly] as M —
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oo where A;’s are spaced uniformly in this inter-

val. Then Limar—eolimroJir(8; M, Qp, Qu) “&1
Jio(8; 00,1, Qur) uniformly in @ for § € O¢c where

J100(8; 00, S1L, Q)

fu jw. jw jw. g2 4w
= |A(e™; 0)H (™) — Be a)| (3-17)
QL

Remark 2.

measurements

2(t) = y(t) —v(t) = H(q)u(t).

Consider the time-domain least-squares parameter estima-
tion problem where we fit model G(g) to data {u(t), z(¢)}
[4, Sec. 7.1]. Choose § to minimize E{¢’(t)} where

Suppose that we had access to noise-free

(3-18)

ng ny
e(t) = 2(t)+ Y aiz(t—i) — Y biu(t—i). (3-19)
=1 i=1
It has been established in [1] that

Be@= [ A 0)H(E) - Be;0)[" Suulw) 22

—_r

(3 — 20)
If {u(t)} is white with variance o2 then the right-side of (3-
20) equals Ji0(8; 00, 0, 7) to within a scale factor. That is,
asymptotically as both T and M — oo (see also Theorem
1 in Sec. 4), minimization of (3-13) yields the same mean
estimator and model fit as would have been obtained if the
true system (1-1) were driven by white sequence {u(t)} and
noise-free measurements were available. This then is the
main justification for seeking a frequency-domain solution
given time-domain data. It is known that under noise-free
measurements and white input, the least-squares solution
has some very attractive properties {9]; these are discussed
in Sec. 4. 0O

4 Convergence Analysis
Define
h(l) = arg {mingJ17(6; M, Qz, Qu)}, (4-1)

85

arg {mingJ1c0(8; M, 1, Qu)}, (4-2)

5(1) = arg {mingJ1o0(8; 00, Or, v)} . (4-3)
Under the hypotheses of Lemma 1, it

!

Theorem 1.
follows that

w.p.1l

= {0 lJloo(G;M, QL,0Qu)= J1oo(§(1:f);M, Qp, nU)}a
(4—-4)

]-imM—ooolimT—tooa;n)‘ "é.l Dgo.)(anQU)
= {o lJ,.,,,(o; 00, 1z, ) = Jreo (8 00, n,,,nu)} .

(4-5)
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Proof: Mimic the proof of Theorem 1 in [10] using Lemma
1. Note that the convergence to the set D(!) is to be in-
terpreted in the sense of Ljung [5, p. 215]. O

The properties of 5(1) for Qr = 0 and Qy = = have
been studied in [9). First we need some definitions.
Def. Sufficient Order Model Set: The true model
H(q) is of the type (1-3) such that the true model orders
nao and npo satisfy min(ng — a0, mp —ne0) > 0. @
Def. Reduced Order Model Set (Undermodeling):
Either the true model H(g) is not of the type (1-3), or it
is but the true model orders n.o and nyo satisfy min(n, —
Nao,Mb — Npo) < 0. @
It has been shown in [9] that under the sufficient order

case, Dg)(o,'x) equals the set

DU = {0 | B(q;0)/A(g;6) = H(z)}. (4-6)

Under undermodeling and Q7 = 0 and Quy = =, by
[9, Prop. 2], the zeros of A(q;a(l)) lie in the open unit
disk; hence the fitted model G(g) = B(q;a(l))/A(q;—é(l))
is stable. Moreover, under undermodeling, ) = 0 and
Qu =, 7 is unique (i.e. D&’(o, 7) is a singleton), and
Jm,(a(l); 0,7) > 0.

Using the above results from [9] and Theorem 1, the
following result is immediate.
Theorem 2. Under the hypotheses of Lemma 1, 27 =0,
ly = 7 and undermodeling, -

limM—boohmT—oooa(;j)u Wg-l 5(1)

where 6(1) is unique such that the geros of A(q;é(l)) lie
in the open unit disk; hence the fitted model a(q)
B(q,a(l))/A(q,_( )) is stable. Moreover, g(t) = k(1) for
i=0,1,---,np where G(q) =Y .9 * and h(3) is
as in (1 2) Under (AS1)-(AS4), Q7 = 0, Qu = = and
sufficient order modeling,

m s oo im Ly o0 B i "Eh ple),
If min(na — nao,mp — nso) = 0, then D(*°) is a singleton.
.

Using [3, Lemma 5] and Theorem 1, the following result
is immediate.
Theorem 3.  Under (AS1)-(AS4), QL > 0, lu < =«
and sufficient order modeling such that n. + np < 2M, it
follows that

w.p.1
imrowfyy € DL

If min(na — a0, e — Beo) = 0, then Dl#0) jg 5 singleton.
°

5 Performance Analysis
We now state some results without any proofs. We will
use the short notation J{;(8) for Jir(8; M,Qr,Qu). Also

we will use ") for both 8 _(1) and 5(1), it being clear from
context as to which is meant Let 7¢ denote the gradient
operator w.r.t. vector #. Similarly denote the Hessian

matrix by 3J whose ij-th element is T::a%-
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It can be shown that bTTlA),I is asymptotically Gaussian

with mean bﬂ) and
cor {e B}

[Vgoﬂa‘(a(l))] - Yom [VgaJ{T(a(l))] _1+0(T—1)
(5-1)

Ly
TM

where

M
-0 1 S mH S5+5T
Vge-]f:r'(b(l)) = 17 _S_ :(C;C, +Clcl) w.p.1,

=1

T
G = [eﬂ'H'(e’.A‘)E e Ee’."‘x‘H'(e’.)")E P L . e’."“']

M
Ben = 25 30 () (AF + FLFT),

i=1
Fi= A8 + E@ )k,
26"y = A T H(EN) — BT,
T
Cip = [ L Lgme gl 50] .
Theorem 4. Under (AS1)-(AS4) and undermodeling,

1 / % (5(1} l)vr - 5(1)) is asymptotically Gaussian with zero-

mean and covariance matrix specified by (5-1). The same
result holds true under sufficient order modeling if D(*°) is
a gingleton. e

The simulation results based on 100 Monte carlo runs
are shown in Table I for the approaches proposed in Sec.
3.2 under the sufficient-order case with ng, = n,0 = 2 and
ny, = np = 2. We also show the theoretical standard
deviations for the parameter estimates. These were calcu-
lated using the expression (5-1) with mean values of the

estimated parameters as @(1). In applying the proposed ap-
proaches, we selected 2mr+1 = 11 for the record length of
T = 1024. The number of frequency points M was taken to
be all the points on the coarse grid (3-7) that lie in (0, ).
For comparison we also show the results obtained using
the classical least-squares algorithm ([4, Sec. 7.1]) and the
modified least-squares algorithm of [1]. Both of these ap-
proaches are time-domain approaches. The approach of [1)
is designed to provide unbiased estimates for model (1-1)
when {v(2)} is white. It should be noted that [1} does not
fit a model such as (1-3); rather, [1] fits

Yo big”*
n i
1+ 300, aig
In Table I we do not display bo.

(6-1)
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