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ABSTRACT

Transmissions through multipath channels suffer from Rayleigh
fading and intersymbol interference. This can be overcome by
sending a (known) training sequence and identifying the channel
(active identification). However, in a nonstationary context, the
channel model has to be updated by periodically sending the
training sequence, thus reducing the transmission rate. We
address herein the problem of blind identification, which does
not require such a sequence and allows a higher transmission
rate. In order to track nonstationary channels, we have derived
an adaptive (Kalman) algorithm which directly estimates the
entire set of characteristic parameters. An original adaptive
estimation of the noise model has been proposed for this
investigation. Monte-Carlo simulations confirm the expected
results and demonstrate the performance.

1. INTRODUCTION

Mobile communications in urban areas are subjected to
multipath propagation. This causes Rayleigh fading and
intersymbol interference, thereby deteriorating the transmission.
Knowledge of the propagation channel is then crucial in order to
perform an effective equalization.

The active identification consists of sending a known training
sequence, whose corresponding response through the channel
leads, after a parametric estimation, to the propagation
conditions. Propagation channels are almost always time-
varying: estimated parameters have to be updated by
periodically sending the training sequence, reducing thereby the
effective transmission rate.

A two-stage algorithm for the blind identification of a
stationary multipath channel has been proposed in [1], but can
not easily cope with time-varying channels. This paper describes
the Conditional Maximum Likelihood (CML) method applied to
parametric estimation and provides a Gauss-Newton procedure
for implementation. In addition, an original adaptive scheme is
proposed for tracking nonstationary channels.

The organization of this paper is as follows. In Section 2, we
propose a parametric model of the channel and describe the
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problem formulation. Section 3 introduces the corresponding
log-likelihood and provides an ML estimate of the parameters.
In Section 4, a recursive implementation of ML estimation,
based on estimation and covariance update, is proposed. A
generalization for time-varying parameters is proposed in
Section 5 like an adaptive Kalman filtering. Finally, concluding
remarks are presented in Section 6.

2. STATEMENT OF THE PROBLEM

2.1 A parametric model of propagation
A radio channel can be depicted by M paths each one
characterized by 1, 6,,, A, (with 1, <...<1,.), which are the

group delay, azimuth and elevation angles, respectively, while
o and ¢ are the corresponding attenuation and phase. The

emitted signal is supposed to be received by an N-sensor array.
The complex, low-pass impulse response between the emitter
and the i® sensor, noted h;(t),1s[1, 2]:

M .
hi(t)= D 03,0, A8t -7, )e™  i=1<.<N, (1)
m=1

where a,(0,A) is the response of the i™ sensor in the bearings
(6,A) relative to a reference sensor. It has been assumed in this
work that the incoming wavefronts are plane.

In this paper, we assume that the channel is ideal; its
response is uniform within the passband and zero elsewhere.
The numerical impulse response (finite and causal) is then [1]:

M .
hi[k]=F, ) opa; (0)e* sine(k ~Fr,.)  0<k<L @
m=1 ’
h;[k]=0 for k<0 or k>L

2.2 Representation of spatio-temporal data

The output of the i™ sensor at the time k is given by convolving
the input signal s[k] and the impulse response, and is further
perturbed by an additive noise n;:

X[ = Sk -]+ n,[K] G
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The data can be written under vectorial shape as the set of
the outputs of the i sensor for K successive snapshots:

X = [xi[K] X; [1]]T’ )
and then gathered into a spatio-temporal vector of length NK:
x:[xlT xNT]T- (5)
which may be written as follows:
x=H s[K.K+L]+n. (6)

H is a generalized Sylvester matrix of size NKx(K+L), made
up of the N impulse responses [3], while s is a vector containing
signal values. According to (2), 3 is actually a function I O),
where ® is the vector of unknown spatio-temporal parameters.

2.3 Formulation of the problem

Given only the data collected on the array of sensors, we intend
to identify the propagation channel (characterized by the set of
physical parameters @) in a blind way, that is without knowing
the transmitted signals, whose estimation is furthermore
achieved after channel equalization. Tracking of the propagation
channel (almost always time-varying) has to be considered by
the use of an adaptive algorithm.
Remark 1

The channel model, defined by (2), is characterized by
integer parameters. Some of these are unknown (M and L) and
depend on propagation conditions, and may be time-varying. We
are assuming in this paper that these parameters are known.
Remark 2

From the shape of the Input/Output relationship (6), it turns
out that multiplying each gain amei¢m by any complex scalar B
amouts to working with the signal Bs(.). So we shall take in the
following simulations &¢® =1 (that is &, =1 and ¢, =0).
Moreover, estimating the M group delays separately is not
possible, because no temporal reference is available. Actually,
only the differential group delays can be estimated. This can be
easily accomplished by imposing 7, =0. The set of the spatio-
temporal parameters can be written:

. . T
®=[6, A io, ¢, 6, A, T, Oy Ay Ty

3. MAXIMUM LIKELIHOOD ESTIMATION

3.1 Conditional Maximum Likelihood method (CML)

The input s{k] is considered as an unknown, with the
parameters to be estimated being the physical parameters of the
impulse responses. The only random data element is the
additive noise. If many independent observations x, (p=1..P)

are available, the covariance matrix takes the form:
- 1<
R, =— xppo : O
P
p=1
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Under the assumption of white (both spatially and

temporally) gaussian noise, of power o’ , the maximum
likelihood estimation of ® can easily be derived:

®=arg mgx[tx(l']wflx)} =arg ngn [tr(l'lgflix)} , (8)
where I, = I(H"'I "M is the projector on the subspace
spanned by the columns of @ ("signal subspace"), and 1'[;4 is
the projector on the orthogonal subspace ("noise subspace").
This criterion depends no longer on s, and the minimization is
thus first performed with respect to ®. Afterwards, the
equalization can simply be achieved by using the following
relation:

§= ("9 ' x. )
Remark 3
It is obvious, from (8), that 4 has to be full column rank so that

H"Q is not singular. This can be strongly connected to the
feasability of the blind deconvolution of FIR multichannel and
to the coprimness condition for the polynomials H, (z)

1<n<N.
3.2 Optimization procedure

This problem can be related to the well-known M.L. search of
directions-of-arrival (D.0O.A.) in array processing. Optimization
of this problem can be conducted by some conventional methods
like Wax & Ziskind [4], EM. [5], and Gauss-Newton. Usually,
the final stage of optimization is a Gauss-Newton descent. Once
convergence has been achieved, we wish to track variations of
the channel. In the next sections, we propose a scheme of blind
parametric tracking with an M.L. method.

4. RECURSIVE ML IMPLEMENTATION

4.1 Preliminary: combination of efficient estimates

Let's note ®, and ®, as two independent efficient estimations

of the vector @, they are assumed to follow normal laws,
N(®,T",) and N(®,T,) respectively. For efficient estimation,

the log-likelihood is quadratic, and the value @, of @ that

maximizes p(X|® ») p(X|€‘)2 ) is easily obtained by maximizing
the sum of log-likelihoods given by:

L®)=(©-0,)"'T,'©®-0,)+©-0,)"T,"©®-0,).
(10)
The identification with (@ -©, " I, (©@-0,) leads to:
@, =T, +I,)T,'®,+I,"®,), (11a)
r,' =77+, (11b)

4.2 Combination of one estimate with a new observation

As opposed to the previous case, only one efficient estimate and
a new set of observations are available (in fact, a single spatio-
temporal observation is sufficient). Indeed, the new observations
are unable to provide alone an efficient estimation for the
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parameters. We assume that @ is normally distributed with the
density being, at time t, w(@)t,rt). Furthermore, the log-
likelihood at time t can be written according to its second-order

expansion (quadratic approximation) using the gradient and the
hessian of the log-likelihood:

9(X|®) = vt”(®—é,)+§(®—ét)“nt(@—ét). (12)

It is assumed that the resulting log-likelihood function (after
integration of the new measurements) is sufficiently sharply-
peaked around ©,, so that the second-order approximation

remains valid over the interval [@t,ém]. The resulting log-

likelihood (up to a constant term) is obtained from Bayes
integration formula:

LO[X) = L(X|®) +%((~) -6, '©-6,). 13

The identification with the a posteriori Gaussian distribution
JU(@M,FM) leads to the maximum a posteriori (MAP)

estimate:
8,,=0,-T.v
t+1 1 t I t- 7t (1 4)
r, =T +H,
Figure 1 provides an overview of the recursive implementation
of the maximum likelihood method for the update of estimation
and covariance. Both gradient and Hessian are calculated from
the new data alone , and are combined with a priori estimate (at
time t) to give the a posteriori estimate (at time t+1), according
to (14).

t+1

t t+1 Time

7 /. 7

a priori New data

estimate

R Computation
MO}

of V,and H,

' a posteriori
5stimate ‘N(é‘“’ﬁ”)

Figure 1: Maximum Likelihood and recursive implementation.
4.3 Simulations

Simulations were carried out to demonstrate the applicability
and the performance of the proposed algorithm. All of the
following simulations have been conducted for a S-element
linear array with equispaced sensors. A spatio-temporal
observation has been built from K=20 samples (it is thus a 100-
dimensional vector). Five snapshots were used to compute the
covariance matrix (7), and the gradient and Hessian. The input
signal type is FSK, and the received data are sampled at four
times the baud rate. The channel is represented by two paths,
whose main parameters are given in the following table:
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1 1 0 9° | 30° | 02
07 | 20° | 90° | 55° [ 29

The order of the impulse response is assumed to be known in
this study (see remark 1); L=4. Root-Mean-Square Error
(RMSE) is used to measure the accuracy of parameters
estimates:

2
length(®) e - “.
RMSE=| ) [ i Q) . 15)
e

i=1 i
We have studied the convergence of this algorithm by plotting
on figure 2 RMSE versus iteration number for many values of

the Signal to Noise Ratio (SNR).

100 — r r
10
10-
: : SNR=15dB :
10- 5 ’ §
0 5 10 15 20

Figure 2: Convergence of the recursive algorithm.

5. AN ADAPTIVE ALGORITHM FOR TIME-VARYING
CHANNELS

5.1 Dynamic model

For time-varying channels, a dynamic model for the evolution of
parameters is assumed:

O, =0, +u, +¢g,. (16)

u, accounts for the long-term average motion, and €, for fast

decorrelated position increments (random walk). In fact, u, can

be seen as a command while €, may be the process noise,

zeromean, uncorrelated with ® and u, and with R, = E[ststH ]

5.2 Algorithm derivation

With the "command" u, being assumed to be known, the best

estimate of @ at time t+1, without any new measurement, is:
Oy = Oy +u. (17)

The error of estimation is €,, and the computation of its

covariance matrix, associated with equation (16), leads to:
rm]t =rt\t+Rs~ (18)
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Assuming that the resulting log-likelihood is sufficiently
sharply-peaked to be well approximated by its second-order

~

expansion on the interval [@) ® ], and considering the

1)t trlft+]

set of equations (14), (17) and (18), it is possible to propose the
prediction-estimation filter:

~

®t+l|t = ®m +u,

Computation of H((:) t+l|t) and V(@ t+]|t)
Coge =Ty +R, (19)

R H(A )
Ft+]|t+l _rm\t + ®t+1|t

2] 12) r

~

t+1|t+l'v(®t+l|t)

However, the previous filter does not remain efficient in the
most general situation, because neither u, nor R are known,
and they are generally time-varying.

telft+l= " telft

5.3 Recursive noise covariance computation

The simplest way to estimate u,, by using the filtered positions,
is:

u, = ®t|t "®x—m—1' 20)

However, this kind of estimation is very sensitive to statistical

fluctuations and may degrade performance. The proposed

solution consists of estimating u through a finite time averaging
(smoothed estimation) according to:

U, =1-p)u_ +u1(®t‘t —®'—11“‘)' (2n

The covariance matrix of the random walk is recursively
estimated in the same way, by using the covariance of the
gradient [6]:
R, =H 'cov(V)H, ' -T, -H" (22)
However, the covariance of the gradient is untractable, and we
shall use a smoothed estimation:
R, =(1-p)R +p, H 'V VIH™ -T, -H™).(23)

The whole Kalman filter for the adaptive estimation of @ is
merely derived from equations (19) by replacing u, and R, by
a, and ﬁt respectively, as estimated on line according to (21)
and (23).

5.4 Simulations

This second simulations set illustrates the behaviour of the
adaptive algorithm when the channel is time-varying. We
consider a slowly time-varying channel, for which the evolution
is determistic, according to a sine wave. The context of
simulations is the same as in 4.3 for fixed parameters. SNR is
fixed at 12 dB. The initial conditions are near from the true
values of parameters, that is we assume that convergence as
almost been achieved. Figure 3 shows the tracking of such a
channel.
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Figure 3 : Tracking of a time-varying channel.

(solid line : true trajectory - dotted line : estimated trajectory)

6. CONCLUSION

We have proposed an algorithm for the blind parametric
estimation of time-varying multipath channels. Statistical
performance and tracking properties have been studied by
numerical simulations. Future work involves a theoretical
analysis of the convergence properties and a comparative study
with other blind tracking algorithms.
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