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ABSTRACT

In this paper, an approximate maximum likelihood method
for blind source separation and deconvolution of noisy signal
is proposed. This technique relies upon a data augmenta-~
tion scheme, where the (unobserved) input are viewed as the
missing data. In the technique described in this contribu-
tion, the input signal distribution is modeled by a mixture of
Gaussian distributions, enabling the use of explicit formula
for computing the posterior density and conditional expec-
tation and thus avoiding Monte-Carlo integrations. Because
this technique is able to capture some salient features of the
input signal distribution, it performs generally much better
than third-order or fourth-order cumulant based techniques.

1. INTRODUCTION

This contribution is devoted to blind source separation and
blind deconvolution. In these models, the observed data
{z(t)} (a m x 1 vector) is assumed to be given by

o(t) =D A(k)s(t — k) + v(t) (1)

k=0

where {s(t)} (n x 1) is the (unobserved) input, {v(¢)} is the
(unobserved) additive noise, and A(z) = Zfﬂ A(k)z7F is
an unknown p x ¢ FIR transfer function. It is assumed in
the sequel that: (A1) {v(¢)} is an i.i.d additive zero-mean
Gaussian noise v(t) ~ N(0,J) with J a positive definite
m x m matrix (A2) {s(t)} is an ii.d sequence of n x 1
random vectors with independent components, with density
function p(s;+v) given by:

p(s;7) = [ petoiim), v=Im,- - 90

i=1

(A3) {s(t)} and {v(t)} are independent. This model arises
in many signal processing applications, such has sonar ar-
ray processing or multichannel data communications. A
variety of methods and criteria have been proposed in
the litterature to solve the problem. Most of these cri-
teria are based on contrast functions based on higher-
order statistics (see [11, 10, 6, 7]). In this paper, we
concentrate on a maximum likelihood approach. Denote
n = (A(0), A(1),:--,A(L),J) and 6 = (7n,7). The infer-
ence of @ based on x = {z(1),z(2),--,2(T)] is a standard
parametric problem for which maximum likelihood estima-
tor (under appropriate regularity conditions) may shown to
be asymptotically efficient. Computation of this estimate
is however a very difficult task, because the distribution of
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the observed data will typically depend in a very intricate
manner upon the unknown parameters.

The EM algorithm is ideally suited for such problems
[1). The EM algorithm is an iterative method for finding
the mode of the observed (or incomplete) data likelihood
6 — p(x;0), which is extremely useful for many common
models for which it is hard to maximize p(x;8) directly
but easy to work with an extended (complete) observation
model, obtained by adding to the observed data appropri-
ately chosen missing data. In blind identification context,
the missing data are obviously the input data s(t), which,
if available, would make the identification a simple task.

The EM algorithm formalizes a relatively old idea for han-
dling missing data, starting with a guess of the parameters:
(i) replace missing values by their expectations given the
guessed parameters (ii) estimate parameters assuming the
missing data are given by their estimated values, (iii) rees-
timate the missing values assuming the new parameters are
correct, (iv) reestimate parameters and so forth, iterating
until convergence. In fact, the EM algorithm is more effi-
cient than these four steps would suggest since each missing
data is not estimated separately; instead, those functions of
the missing data that are needed to estimate the model pa-
rameters are estimated jointly.

The name ‘EM’ comes from the two alternating steps:
finding the ezpectation of the needed functions (sufficient
statistics) of the missing values, and mazimizing to esti-
mate the parameters as if these functions of the missing
data were observed. For many standard models, both steps-
estimating the missing values gien a current estimate of the
parameters and estimating the parameters given the current
estimate of the missing values- are straightforward. Unfor-
tunately, this is not the case in the blind identification case:
the M-step is more often straightforward (especially when
the observation noise is Gaussian; see below), but the E-
step is for most input signal distributions analytically un-
tractable (the posterior distribution of the input signal s
given z cannot even be expressed in closed form). One so-
lution to this problem is to resort to Monte-Carlo Markov
Chain estimation technique (to simulate missing values un-
der the posterior distribution) and to use a stochastic ver-
sion of the EM algorithm, where basically the expectation
step is replaced by Monte-Carlo integration (see, [5]).

It is the purpose of this contribution to show that, by (i)
modeling the distribution of the input data as a mixture
of Gaussian distributions, and (ii) (in the convolutive mix-
ture case) splitting the likelihood function, the E-step can
be implemented exactly in a finite (and reasonably small)
number of operations, thus avoiding Monte-Carlo integra-
tion [3]. We end up with an implementation of the MLE
which is efficient both statistically and numerically.
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2. NOISY SOURCE SEPARATION AND I/O

IDENTIFICATION
We will first concentrate on instantaneous mixture (L = 0):
z(t) = As(t) +v(t) (2)

where A is an unknown m x n matrix (m > n). We will
then give some hints to extend the results to convolutive
mixtures in the next section.

Identifiability in this model is discussed at length in [6].
Basically, the mixing matrix A can be estimated up to (i)
permutation of the columns (the numbering of the sources
is immaterial) (ii) a global scale factor for each column. To
avoid trivialities, we set the diagonal elements of the mixing
matrix A to 1. We denote: n = (A,J). The problem is
to find the value of the parameters § = (7,7) given x =
[£(1),--,z(T)]). The posterior density of z(t) given s(t) =
s is p(z|s; A) = ¢(z; As,J) where ¢(e;m, R) denotes the
multivariate Gaussian density function with mean g and
covariance matrix R :

log ¢(z;m, R) = —%(z -m)R™ Yz —m)— —;-log |27 R).

where | o | denotes the determinant. Denote: s =
[s(1),8(2),---, s(T)]. The complete data likelihood is:

T T
log p(x,5;6) = D _ log ¢(=(t); As(t), J) + Y _ log f(s(2); 7)

t=1 t=1
Complete data maximum likelihood estimates for A and J
are obtained by maximizing the previous expression under
the linear constraints a;1 = 1,-,ann, = 1. Thisis a quadratic
minimization problem under linear constraints, the solution
of which problem can be found explicitly (it is not shown
here for brevity). The solution depends on the following
complete data sufficient statistics :

T T
Ras = %; z()s(t) Rus= 7 ; s(t)s(t)'.

Taking the input data {s(t)}+=1,7 as the missing data of the
EM algorithm, an iteration of the EM procedure consists in
(i) (E-step) estimating the conditional expectations of s(t)

given z(t) and the current fit of the parameter §*) (E-step):
Boom15(6)] = [ anola(e) 6%)ds ©

E, g0 [s(t)s(t)] = / ss' p(s|z(t); 8) ds.

and obtaining the expected values of the complete data suf-
ficient statistics

T
= 1
REY) = 7D a0, o [s(t)]
t=1

B = 1 3 Boowls®)s(t)]

t=1

and (ii) (M-step) maximizing the expected complete data
log-likelihood (M-step) under the same lines as above, sim-

ply substituting the sufficient statistics R., and R,, by their
conditional expectations RY) and R,
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This is indeed in striking similarity with I/O identifi-
cation. The only difficulty is the evaluation of the above
conditional expectations. If the input takes only a finite
number of values (which happens to be the case in digital
communication context, the input signal being chosen in a
finite alphabet) conditional integration reduces to a finite
summation [4]; a possible solution is to try to approximate
the integrals in Eq. 3 by direct numerical integration or
to use a Monte-Carlo stochastic integration technique. The
Bayes rule implies that:

p(slz(t); 0) = o(x(t); As, J)p(s; )

J #(z(t); As, J)p(s; v)ds

and thus, despite the components of s(t) are independent,
the posterior density p(s|z(t); 8) does notfactorize as a prod-
uct of one-dimensional marginal. As a result, in absence
of special structure, the evaluation of the posterior density
p(s|z(t); 6) and of the first and second moments of this p.d.f
is a formidable task as soon as n > 3. Perhaps surprisingly,
even simulating random variable under the posterior den-
sity is difficult: one has to resort to a Monte-Carlo Markov
Chain technique, which is a powerful but numerically in-
volved procedure.

It is one of the purposes of this contribution to show that
modeling the input as a mixture of Gaussian distributions
gives an attractive solution to this problem.

Gaussian mixtures We consider the case where the pdf
of s; (we drop the time index ¢ for simplicity), 1 <i < mnis
modeled as a finite mixture of Gaussian distributions:

g
filssiw) =Y miid(sis pi o) 7 = (mi, &),
j=1

T = [7“11 ce ,ﬂ'iq.-]>§i = (F‘ilaatgl, te ;I‘iqiyo't'zqi)
When dealing with mixtures, it is convenient to consider
that there exists an hidden random variable z;, taking its
values in a finite set Z; = [1, - -, ¢;] with probability P(z; =
J) = mij, 1 £ j < gi, such that the conditional pdf of s;
given z; = j is p(si|zi = j) = ¢(si; pij, 0%;). Under (Al)-
(A4), the joint distribution of z, the input data s and the
label 2 = [21, 22, - - -, z»] has the following nested structure:

p(z,s,2;6) p(z|s;n)p(slz; §)p(z; 7), (4)
o(x; As, J)g(s; p2(€), T ()7,
Mz (E) [I'l’lzl s B2z, " :I‘nzn],
F; (5) = diag[ale ] ngza Tty 0'721,:,.]-

It is easily seen that the posterior distribution of s given
z,z is Gaussian with mean a..(f) and covariance A,(6)
respectively given by:

0ex (6) = s () + T+ (O AR O)& — Aps(6)), ()

A, (0) =T, (E) -I, (E)A,Rz (G)Arz (6) (6)

R.(0) = (AT, (A" + 7).
Similarly, thanks to the decomposition Eq. 4, the posterior
distribution of z given z, 7,.(8) = p(z|z;6) is:

ree(®) = f p(z, o 6)ds )
x m ] $(z; As, )b(s; ps (ET=(6))ds  (8)
% AT TATEO ®)
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Using the basic property of conditional probability, we have:
(3, 2|z; 6) = p(slz, 2; 0)p(2|z; 6) (10)

Hence, the posterior distribution of s given z, p(s|z;8) also
is a finite mixture of Gaussian distributions,

p(slz;0) = > plelz; 0)p(s; 0 (6), A.(8)  (11)

Note that the number of components of that mixture is
equal to the product of the number of components g =
ﬂ:;l gi. The computation of the conditional expectations
required in Eq. 3 can thus be done in closed form, avoiding
Monte-Carlo integration. The complete-data likelihood can
now be decomposed as:

T
logp(x,s,2;6) = Y loge(a(t); As(t),J)

t=1

+ D) logd(si(t); s, o) {z(t) = j}
i=1 j=1

+ Z Z log mi;0{zi(t) = j},
i=1 j=1

and the EM reestimation functional Q(6]8') can thus be
splitted in three terms, which can be computed in closed-
form by applying Eq. 5, Eq. 7, Eq. 10

T
Qo) = Foeln) [ logotett)i As ) x
z t=1
X¢(8; Qr(t)z (0)7 Az(t)z(g))dsa
n q
Q:(006) = > / log 6(ss; pij» 933)p(siy 2 = la(t); 8,
=1 j=1
n qi
Q:(816') = ZZlogmjp(z(t)=j|x(t);0').
i=1 j=1

Maximization of Q2(8|0') and Q3(9]¢') is in simple closed-
form. Reestimation formula for the parameter 7,y and o
are not given for brevity.

3. CONVOLUTIVE MIXTURES

We now extend the method presented in the previous sec-
tion to convolutive mixtures. Maximum likelihood estima-
tion for this model is an involved problem because the com-
plete data log-likelihood does not decompose as a sum of
‘marginal’ components. Up to now, most of the attention
has been focused on the case where input signal is a dis-
crete random vector with a finite number of values; in this
situation, the observed signal is an Hidden Markov process
- HMM - with a finite hidden chain and standard estima-
tion procedure may be applied. Several authors have also
derived approximate M.L. estimation procedure for general
input signal pdf based on Monte Carlo Markov Chain meth-
ods (see for example [3] and the references therein). We
will develop in this contribution an alternative strategy,
based on the concept of split date likelthood, first intro-
duced by Ryden [2] for finite dimensional HMM estima-
tion. Roughly speaking, the procedure amounts to segment
the full observation in blocks of size m and to proceed as
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if the samples in these different blocks are mutually inde-
pendent. To keep the notations simple, we assume here
that n = 1 and set A(0) = 1. Extensions to the vec-
tor case is (at least in theory !) trivial. Let m be an
integer, and denote pm(z(1),---,z(m);8) the joint pdf of
x(u:v) = [z(u),...,z()]T:

m L
poxlimif) o o™ [T[6@s Y ABIsn ) x
i=1 k=0

xp(81-L;7) -+ p(Sm;Y)ds1-L - - - dsm.

where o2 is the noise variance. To estimate the parameter
#', we shall use the contrast function:

K(6,6') = Eq (log pm(x(1 : m);6')) —Ep (log pm (x(1 : m);8'))
(12)
which is the Kullback-Leibler information between the dis-
tributions of (x(1),...,z(m)) under § and §'. Of course, the
procedure is not equivalent to maximum likelihood, and we
must first check that ' — K(6,9') is an appropriate con-
trast function. Using well-known result on Kullback-Leibler
distance, K(0,8') > K(6,6) with equality if and only if:

pm(x(1:m);80) = pu(x(1:m);8'), a.e. (13)

In other word, K(6,#') is a contrast function iff the param-
eters are identifiable on a m-dimensional marginal. It can
be shown that:

theorem 1 Assume that there exists k > 3 such that
E(|s(1)]*) < oo and cumi(s(1)) # 0. Then, the identifi-
ability condition Eq. 13 is satisfied.

This result is proved in an extended version of this paper.
It is relies upon identifiability conditions obtained by Gian-
nikis and Swami [11]. Now, we shall consider the following
contrast process:

[n/m]
In(x,0') = Z logpm(x(sm : sm+m —1);8)  (14)

8=0

and then define 6, as a maximizer of I,(8') over ©, the set
of admissible parameter values. The idea of such a contrast
was proposed by Ryden ([2]) for HMM with finite state hid-
den Markov chain. Under standard regularity conditions,
this estimator may be shown to be consistent and asymp-
totically normal;(this result can be obtained by a straight-
forward adaptation of proofs of consistency and asymptotic
normality proofs of the maximum likelihood estimate in the
iid. case).

Remark: Slightly more general contrast can be consid-
ered. Indeed, it may be beneficial to overlap the successive
blocks by a certain amount, say r, 1 <r < n, i.e. to form

[n/7]
ln(x;0') = z log pm (x(sr : sr +m — 1); )

s=0

The estimators obtained by maximizing these contrasts may
be shown to be consistent and asymptotically normal. The
asymptotic variance of the estimators depends upon r: over-
lap may improve the variance.

We know focus on implementation issues. Once again,
we will use the EM paradigm, and will model the input
signal distribution by a finite mixture of Gaussian distribu-
tions. Denote s(u : v) = [s(u), --,s(v)]" and z(u : v) =
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[2(u), - -, 2(v)]T, where 2(t) is the ‘label’ random variable
associated to s(t). The complete data likelihood can be
decomposed in a way very similar to Eq. 4

P(Xm,Sm,Zm;0) =0~ x (15)
m-—1 1
I exo(-5 5t + k) = As(t — L: t + m — 1))*)
k=0 7
m
1 2
II exp(==5(s(t) - )"
gz
k=-—L
where [u1, - - -, p1g] and [03, - - -, 0] are respectively the mean
and the variance of the individual components of the mix-
ture and ® = [my,---,mg] are the proportions and where
Xm = x(t :t+m-1), 8;m =s@—L :t+m-1),

Zm = 2z(t—L:t+m—1). As above we need to compute the
following quantities: p(Sm|Xm,2Zm;0) and p(zm|Xm;8).The
conditional distribution s,, given x,, and z,, is Gaussian:
the mean and the covariance of this distribution can be ob-
tained very efficiently using an efficient ‘Kalman-like’ state
smoother (while the Kalman filter uses past observations, a
state smoother yields estimators of the state vector based
on the full set of observations in the sample. The classical
fixed interval smoother is presented in [13] but a more effi-
cient state smoother has recently been developed in [8, 9]).
Similarly, the conditional distribution of z,, given x,, may
be seen to be proportional to :

P(am|m; 0) o / P(Xrm Sy 23 O)

this integral can be explicitely computed based on the de-
composition Eq. 15. Significant reduction of the compu-
tational burden can be achieved by resorting to a kind
of ‘forward-backward’ algorithm, coupling these two steps.
This algorithm is described in the full-length version of the
paper. The remaining steps closely follow those presented in
the previous section and are not repeated. This method is
computationally intensive but still is an order of magnitude
faster than Monte-Carlo based solutions to this problem.

4. SIMULATION

As an illustrative example suppose that the input signal is
an i.i.d sequence distributed according to a mixture of two
Gaussian distribution:

p(8;7) = 7d(8; p1,01) + (1 — T)P(s; pa2, 03)

we set: ™ = 0.5, 3 = —p2 = 0.95 and o = 02 = 0.1.
It is easily seen that: E,(s) = 0 and E,(s®) ~ 1. The
skewness of s is null and the kurtosis is k4(s) = —1.6. This
signal is fed in a FIR filter of order 3, with coefficients [0.5
-0.75 0.5]. The additive noise v(k) is zero-mean, Gaussian,
and the signal to noise ratio is varied between 0 dB and
20 dB. The record size is T = 200. We use the splitting
procedure described above with m = 4. To reduce realiza-
tion dependency of the simulations, we averaged over 100
Monte-Carlo simulations. The initial estimates for the filter
coefficients and the noise level are obtained by applying the
Giannikis-Swami [11] fourth-order identification technique.
Results are summarized in the table below. It is seen that
the procedure produces very reliable estimates of the FIR
coefficients. This method clearly outperforms higher-order
methods, at the expense of a significant increase in the com-
putational burden.
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True MA coef. || 0.5 -0.75 | 0.5
0dB

mean 0.52 | -0.77 | 0.47
std. dev. 0.25 | 0.33 | 0.23
10 dB

mean 0.51 | -0.74 | 0.49
std. dev. 0.06 | 0.11 | 0.09
20 dB

mean 0.50 | -0.75 | 0.50
std. dev. 0.01 | 0.01 | 0.02

In fact, the proposed method extends to the semi-
parametric context, in which the input signal distribution
is not known: it is not necessary that the input data ac-
tually are distributed as Gausstan mixtures. The crucial
point is that the mixture captures the most important fea-
tures of the distribution of the input. Since many distri-
butions can be approximated with arbitrary precision as
Gaussian mixtures, the present approach offers a route to
semi-parametric estimation. Practical and theoretical re-
sults in that direction will be presented at the conference.
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