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ABSTRACT

In this paper we propose to distinguish between con-
stant amplitude polynomial phase signals and the ones
having random amplitude. We study four possibilities
for the modulating process. We show that the dis-
tinction of this kind of signals is not always possible
when using the Polynomial Phase Transform. In fact,
in some applications, we show that we cannot estimate
the phase of the signal with this transform. In order
to solve this problem, we introduce a new transform
which allows us to estimate this phase in these partic-
ular situations. The obtained transform is referred to
as the Modified Polynomial Phase Transform.

1. INTRODUCTION

Polynomial phase signals (PPS) are commmonly used
in many areas such as radar, sonar and communication.
Many techniques, based on higher-order statistics, such
as the Polynomial Wigner-Ville Distribution (PWVD)
[1], the Polynomial Phase Transform (PPT) [2] and the
Generalized Ambiguity Function (GAF) [3], have been
introduced to process such signals. The principle of
the two last transforms is to nonlinearly transform the
signal to obtain a sinusoid at a certain frequency which
is directly related to the higher-order coefficient of the
phase of the signal.

In this paper we consider the following model
y(n) = b(n)ej¢(") +w(n), n=1,.,N. (1)

with

N .
n) = Z ai(nA)’ (2)

where A is the sampling period, w(n) is a complex
circular N'(0,02) white noise and b(n) is a real modu-
lating process independent of w(n).
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In [4], the estimation of the deterministic time-
varying amplitude PPS was addressed. The estimation
of the random amplitude PPS, using the cyclostation-
ary approach, was studied in [5]. In [6], the authors
proposed the analysis of FM signals affected by a Gaus-
sian noise using the Reduced Wigner-Ville Trispectrum
(RWVT). In [7], the author addressed the problem of
distinguishing between random amplitude harmonics
and constant amplitude harmonics. In this paper, we
study the problem of differentiating between PPS with
a random amplitude and with a constant one. We con-
sider the following situations for the real modulating
process b(n)

o M1-b(n) = by # 0.

e M2-b(n) =0.

e M3-b(n): white zeromean, with finite moments.

e M4-b(n): white nonzeromean, with finite mo-
ments.

2. PROBLEM DESCRIPTION

The PPT (2] and the GAF [3], were introduced to pro-
cess constant amplitude PPS. It has been shown in [3]
that the two transforms lead to the same conclusions
for the estimation of polynomial phase coefficients. In
this paper, the proposed analysis uses the PPT. How-
ever, all the results which will be obtained through this
analysis are valid for the GAF. Let us recall the defini-
tion of the PPT defined, in [2], by

Ny, 8,7)= Z H ( (k) (my —-kr)) e InAl
n=N; k=0 (3)
where ¢, = (Nk'l) and N; =14 (N - D)r.
The main result of thg PPT is that for a constant ampli-
tude PPS y(n) = boe/#™) we have the following result
1

W= NIAnNT

arg moa'x |£N(y: 0: T)' . (4)
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Let us now discuss the estimation of the higher-
order coefficient ay of the phase ¢ of the equation
(1). TIn this order, let us evaluate the expectation
E[Pn(y,0,7)]. It is then possible to establish the fol-
lowing results for the four situations of 5(n).

For the model M1

E[Py(3,6,7)] =8 Py(®™,0,7).  (5)
For the model M2

E[Pn(y,6,7)]=0. (6)
For the model M3
E[Py(y,0,7)]=0. (7)

For the model M4

E[Pn(y,0,7)] (H mc) e’¢(") ,0,7)#0

where m, = E[b°*(n)].

From the results (5), (6), (7) and (8) different ob-
servations can be made:
1). For PPS with constant amplitude and the ones
with white nonzeromean amplitude, |E [Py(y,8,7)]|
produces a spectral line at Nlay(AT)VN~1, ie ay is
given by

(8)

arg max |E [Py (y, 0, 7]l
(9)

Thus, we see that the determination of the coefficient
ay is possible via (9). However, if we do not have
any prior on the process b(n), it will be impossible to
distinguish between the nature of the two amplitudes.
2). From equations (6) and (7), we have for the models
M1 and M2, E [Py (y, 0, 7)]=0. So it will be impossible
to estimate the coefficient ay and thus the phase ¢,
and it will, also, be impossible to distinguish between
the purely stationary case, y(n) = w(n), and a PPS
with white zeromean amplitude . For this purpose, we
should introduce another technique which allows us to
estimate the phase in the case of model M3.

1
N = Ni(Ar)N-T

3. DISITINGUISHING BETWEEN PPS
WITH CONSTANT AND WHITE
NONZEROMEAN AMPLITUDE

The problem of distinction between both cases is pos-
sible using the following remarks. In fact theoretically
after the determination of the coefficients {a;} and mul-
tiplying the original signal by exp(—j@(n)), we obtain
respectively for the two models M1 and M4

Z1(n) = bo+w(n)eI*™ (10)
Za(n) = b(n)+ w(n)e I*M), (11)
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Furthermore, it is possible to show that

E [Pi((21(n) = b0)*,8,7)] = 0 (12)
E [P, ((Fa(n) — mp)%,0,7)] = P,(02,0,7) (13)

where o2 = E[b*(n)] — m2, my = m; and P,(z,0,7) is
the DFT of the signal z(n).

Thus from (12) and (13) we can distinguish between
M1 and M4. In fact |E [P,((Z1(n) — bo)?,6,7)]|=0,
V8, for a PPS with constant amplitude whereas
|E [P1((22(n) — ms)?, 8, 7)] | will produce a peak at the
origin for a PPS with white nonzeromean amplitude.
We obtain the following algorithm

e Evaluate |E[Py(y,6,7)]|.

- If there is no peak, then M2 and M3 are possible.
Stop.

- Else M1 and M4 are possible. Continue.

e Estimate {d;} and b by the PPT-based algorithm.

- In the case of the PPS with constant amplitude
b = bo ~ bo

- In the case of the PPS with white nonzeromean
amplitude b = 7y, =~ my

o Apply B[Ry ((ye™ Lizo 2" ~ 2,0, )
- If there is no peak, then M1 holds. Stop.
- Else M2 holds. Stop.

Ezamplel

We generate N.=300 samples of a third-order PPS
with ap=1.0003, a1=7.8540, a>=0.1257 et a3=0.0063.
The sampling period was A=0.2s. The parameter T
is chosen such that it takes at each step of the PPT-
based algorithm 7=7,,=%= [2]. In the model M1, bp=1
whereas in M2 the process b(n) is N(0.5,1). A complex
circular V(0,0 ) white noise is added to b(n)e”’(”)
The signal to noise ratio (SNR) is defined in the first
case by SNR=10log,(b3/02) and in the second case
by SNR=10log,4(cZ/c2). In this example and in the
following one we take SNR=15 dB. E[P ] is estimated
by averaging P, of 100 independent realizations.
From the peaks appearing in Fig.1(a), Fig.1(b),
Fig.1(c), Fig.2(a), Fig.2(b) and Fig.2(c), it appears
that the values of the estimators a3, d» and a; and
then ag are almost the same for the two models M1
and M4, These values are respectively equal to 0.0063,
0.1257, 7.8540 and 0.9998. The set of these estimate
values are very close to the real ones. However for the
estimation of b, we found for the first model M1 by =

1.0007 = by 21 and for M4 7, = 0.4981 =~ mp £0.5.
In order to distinguish between the two amplitudes we

evaluate |E[P; ((yexp (—j Yomg &:(nA)) — b)2,6,7)].
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Fig.1(d) does not reveal any peak while Fig.2(d) shows
a peak at the origin corresponding to the variance of
the process b(n). Thus, we conclude that the first sim-
ulation corresponds to M1 and the second one to M4.
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Figure 1: (a)-|E[P5(y, 8, 7)]|, (b)-|E[Py(y,0,7)]| after

removing as, (c)-|E[P;(y,, 7)]| after removing a3 and
a2, (d)-| B[R, ((yexp (= Tizo ai(nA)Y) = 5)2,6, 7).

4. THE MODIFIED PPT

When the application of the PPT does not reveal any
peak, two models of the signal are possible, that is the
PPS with white zeromean amplitude and the purely
stationary case corresponding to y(n) = w(n). Fur-
thermore, in the first situation the estimation of ¢ us-
ing the PPT is impossible. It is therefore necessary
to introduce another technique which allows us, in this
case, to both estimate ¢ and distinguish between the
PPS with white zeromean amplitude and the purely
stationary case. For this purpose, we can for exam-
ple square the kernel of the PPT. This operation leads
to a new kernel where only the even-order moments of
b(n) appear and the first-order moment, which is at
the origin of the result (7), disappears. The resulting
distribution referred to as the Modified-PPT (MPPT)
and denoted by My (y, 8, 7), is defined by
N, N-1

E H ( (*k) ))Zc" LYY

n=N; k=0 (14)

The following special cases illustrate this definition

Ny, b8,7) =

N,
My(y,6,7) = Y yP(n)eina?
n_;e |
Ma,07) = 30 ) (=) e

n=1471
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Figure 2: (a)-|E[Ps(y,9,7)]|, (b)-|E[Py(y,8,7)]| after
removing as, (c)-|E[P,(y, 8, 7)]| after removing as and

a2, (d)-|E[P; ((yexp (= Cizo a:(nA)) — 5)2,0,7)]I.

It is easy to see that according to the definitions of
the MPPT and thg PPT, the two operators applied to
an FM signal, bye/#(™) are related to each other since

My (boe?*™,6,7) = 82" P (e29(), 6, 7).
(15)

Thus for a phase ¢ given by (2), we obtain
ay = arg moa,XIMN(y,G,T)I.

1
2NY(rA)N-1 (16)

Let us now evaluate E{My (v, 8, 7)] and discuss the
estimation of the phase ¢ appearing in (1) for the mod-
els M2 and M3. It is then possible to show, for the
model M2 corresponding to the purely stationary case,
the following result

E [MN(ya 9) T)] =0 (17)
while for the model M3, we obtain

N-1
E[My(y,0,7)] (H m26k> P (ef2%™) 6 1) £ 0.
k=0 (18)

Thus from equations (17) and (18), we see
that for the purely stationary case, y(n) = w(n),
E[Mn(y,0,7)] vanishes V@, while for a PPS with
white zeromean amplitude, |E [_N(y, g, ‘r)] | produces
a spectral line at 2Nlan(AT)V=1 i.e ay is given by

a = arg. max | [Myy(3, 0, 7).

1
2N!(Ar)N-1 (19)
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The determination of the higher-order coefficient
an is therefore possible when using the MPPT. Con-
sequently, all the other coefficients will be estimated
using the MPPT instead of the PPT. Hence the fol-
lowing algorithm of differentiating and estimation of
the phase ¢ of the signal

e Evaluate |E[Py(y,0,7)] ]

- If there is a peak, then M1 and M4 are possible.
Stop.

- Else M2 and M3 are possible. Continue.

e Evaluate |E [My(y,0,7)]|.
- If there is no peak, then M2 holds. Stop.
- Else the model M3 holds. Continue the estima-
tion of {a;} using the MPPT.

Ezample 2
We consider the same signal and we consider b(n)
N(0,1). Fig.3(a) presents |E[P5(y,8,7)]|. It does not
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Figure 3: (a)-|E[Ps(y,0,7)]l, (b)-|E[Ms(y,8,7)]l,

(c)-|E[Mq(y,6,7)]| after removing a3,  (d)-
|E[M, (y, 8, 7)]|after removing as and as.

show any distinct peak, which is in accordance with
the theoretical result (7). However the application of
|E[Ms(y, 8, 7)]| reveals a peak around 30.24, which is
the value of 12a3(Ar7)?, as shown in Fig.3(b). Thus
the estimated value of a3 is @z 0.0063. In Fig.3(c), we
show |E[M,(y,0,7)]| after removing ds. This figure
shows a spectral line around 15.084, which is the value
of 4a;Ar. We find for @, 0.1257 and in Fig.1(d), we
observe a peak around 15.708 which is 2a;. The esti-
mated value of a; is 7.854. The estimated value dg of
ap is 1.0003.
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5. CONCLUSION

In this paper, we studied the problem of distinguish-
ing between PPS with constant amplitude and random
amplitude PPS. We considered four situations for the
modulating process. When the application of the ex-
pectation of the PPT reveals peaks, two situations are
possible: either the signal is a PPS with constant am-
plitude or the signal is a PPS affected by a multiplica-
tive white nonzeromean process. We proposed in this
paper one solution to distinguish between these two
cases. However, when we are confronted with an ab-
sence of a spectral line, two situations are possible: ei-
ther the purely stationary case or a PPS affected by a
white zeromean multiplicative process, furthermore, in
this last case, we showed that the PP'T does not allow
us to estimate the phase. We proposed, so, a solu-
tion to this problem by introducing a modified version
of the PPT. In addition, this last transform allows us
distinction between the two models M2 and M3.
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