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ABSTRACT

Continuous Wavelet Transform (CWT) is a useful
technique to analyse time-varying signals.  Direct
computation of CWT via FFT requires O{Nlog,N)
operations per scale, where N is the data length. This
paper compares two fast algorithms that compute CWT
at a cost of O(N) per scale. One is a trous algorithm
and the other is Shensa algorithm. Although both are
based on the multiresolution analysis structure, their
accuracy in computing CWT is quite different.
Theoretical error expression is derived and simulation
results are presented for comparison.

L INTRODUCTION

Most signals in practice are time-varying in nature.
Analysis of these signals requires a time frequency
method such as short time Fourier transform (STFT).
Another time frequency technique called the wavelet
transform (WT) has become popular recently because it
provides a constant-Q analysis rather than constant time
and frequency resolutions as in STFT. WT has been
applied to many applications such as signal analysis {1],
image compression [2], computer vision [3}], and many
others.

The continuous wavelet transform (CWT) of a signal
s(t) is defined as [4]

CWT(a,1) =:[La_fs(z)w‘(‘—;3)dz

1

=T;J.s(t+t)w'(£]dt (1)

where y(t) is a mother wavelet function, a and 7 are the
scale and translation respectively and the superscript * is
complex conjugate. The signal s(f) can be reconstructed
from the transform coefficients by [4]

1 (= (= 1 (-1
S(l)=FvJ:“J:>0CWT(a,‘C)'\j—;\.|I('—a—)a—2dadT,(2)
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provided that the mother wavelet y(t) satisfies the
admissibility condition [4]

_ (Y@
Cv—J; o] dw<eo. (3)

CWT(a,t) is usually evaluated at dyadic scale
a=2",m2>1, and sampled at T=n. Replacing T by n
and expressing s(t) as a sum of its samples gives:

S(I)=§,s(k) sinc(t~k). @)

Now (1) can be rewritten as
CWT(a.n)=>;s(k+n)w:(k) )

where

w,.(k>=—\/%fsinc(t~k>w(§)dt ©

are the samples of a bandlimited and dilated wavelet, and
sinc(*)=sin(n*)/(n*). The coefficients y,(k) can be
precomputed and stored in memory. The convolution
sum in (5) can be implemented by FFT. Thus computing
CWT(a,n) requires O (N log,N ) operations per scale,
where N is the data length. This is costly in most
applications.

Two fast algorithms have been proposed to compute
dyadic scale CWT efficiently that require only O(N)
operations per scale. One is A trous algorithm [5-8] and
the other is Shensa algorithm [5-6]. Both of them share
the same multiresolution analysis (MRA) computational
structure [9] as shown in Figure 1, but the choice of the
lowpass filter g, bandpass filter & and the initialization
filter ¢ are different. Although the two algorithms are
well known in literature, little work has been done to
compare the accuracy of the two methods. The accuracy
of CWT is particularly important when reconstruction
from wansform coefficients is needed. This paper
compares the two algorithms and it is organized as
follows.  Section II reviews the two fast CWT
algorithms.  Section III studies their computation
accuracy. Section IV presents simulation results and
finally a brief conclusion.
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II. A TROUS ALGORITHM AND SHENSA
ALGORITHM

The two algorithms are based on the MRA structure
shown in Figure 1. The input signal in discrete form is
first prefiltered by g. It then passes through stages of
lowpass filter g and bandpass filter A. The bandpass
filter output at stage m produces CWT at scale g =2"
and 1=2"n, where n is an integer. The MRA structure
can be extended to provide the undecimated CWT
samples [5]. For illustration purposes, we shall focus on
the MRA structure only. But the results apply to the
extended structure as well.

The 2 trous algorithm [5-8] chooses the initialization
filter to be an impulse function, the bandpass filter to be
the samples of a mother wavelet, and the lowpass filter g
to be & trous. That is, the impulse response of the
lowpass filter g(n ) satisfies

g(2n)=&n)/2. M
The & trous filter serves as an interpolator to interpolate
the impulse responses in the bandpass filter for the
missing samples in a dilated wavelet. The error in this
algorithm comes from non-ideal interpolation in the a
trous filter.

The Shensa algorithm, on the other hand, selects the
filters such that

00=2 I T2+ ®)
v =2 £ FQe+) ©

where 2L°+1 and 2L +1 are the lengths of g and A, and
o(t) is the scaling function. The scaling function can be
obtained by iterating (8) and detail procedures are in [4].
Equations (8)-(9) are the two-scale equations for the
scaling function and the wavelet. The impulse response
of the initialization filter is set to be [10]

q(n)=fsinc(t)¢'(:—n)dt. (10)

To design the filters for a given mother wavelet, we
first select a regular lowpass filter g and use (8) to
generate the scaling function ¢(t). Applying (10) forms
the initialization filter. To fulfil (9), h is chosen to
minimize the error:

E=f"|w'(:)—2);ﬁ(z)¢‘(2z+1)|2d: (11)

Let B=[Rh(-L),h(-L+1),...,R(L)]" and
¢(t)=2[¢(2t—L),¢(2t-—L+l),...,¢(_2t+L)]T. Taking
derivative of (11) with respect to A and setting the
derivative to zero give

" Al fe
ﬁ=[ f (1) ()" dt:l [ f LOYAGY } . (12)

Copyright 1997 IEEE

The error in the Shensa algorithm comes from the
inexact representation of the wavelet y(r) by the scaling
function ¢(1).

II. COMPUTATION ACCURACY

Since both algorithms use a common structure, we
shall derive a general expression for the error square in
CWT computation using the MRA structure. The
accuracy of the two methods can be examined by
substituting their choice of filters.

Figure 2 is the filtering path to generate the output at
stage m in the MRA. Applying the downsampling
identity illustrated in figure 3 gives an equivalent
filtering path as shown in figure 4, where all the
downsampling operations are done at the end. We use
the symbol [+];, to denote upsampling by a factor of .
That is, [g]+, represents a filter that has 3 zeros inserted
between any two samples in g The output before
downsampling is

dn(n) =>k: s(n —k) f(k) (13)
where
) =N2" g*g* (B, * . * (B e * [ s (19)
and * is the convolution operation. Ideally, d.(r) is
equal to CWT(2",n). Hence using (5) the error at scale
2™ is
A(n) =d,(n)-CWT(2",n)

=Zs+p{fR-v®f. )

To be specific, we consider a bandlimited white input
signal because it contains all frequency components. As
a result, A becomes

A@m)=f(n) -y, (-n). (16)

Taking magnitude square and summing over n, the total
squared error is

&= 3 1ftm-vu )P, an

Given a set of filters, f(n) is evaluated from (14) and the
total squared error is found from (17).

The special choice of the filters in the Shensa
algorithm can reduce & to another form. It is
straightforward to show from (8) and (10),

1 (-
q*g=§jsinc(t)¢ (-’2—"}1:. (18)

Continuing the convolution process simplifies (14) to
t

f(n) =\/—2-;fsinc(t)§,ﬁ(l)¢'(§m;ﬁ+let. (19)

When m is large, (19) can be approximated by
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—n

2 e *
f(n)="\j—2—m'§ h(1) ('27,:”] (20)

and (6) by

Ya(n) =71—27w(%J . (21

Hence setting t=n/2" yields
t= [T o-2sR0e e nPa @)

which is the error criterion E in (11) to find the bandpass
filtler h. It is therefore expected that the Shensa
algorithm, in general, outperforms the 2 trous algorithm.

IV. SIMULATION

The mother wavelet was the Morlet function [1]

1 ~t220? it
W(f):—\/.?{;e 2 ejznf (23)

where 6=3 and f,=03. The signal s(t) was

s(t)=sinc(t) and it had a bandwidth of 0.5. The
corresponding data samples were s(n)=sinc(n),
n=-128,-127,...,127. In the & trous algorithm, the
lowpass filter was g=(-1,0,9,16,9,0,-11/32 [5]
and the bandpass filter & was the bandlimited and dilated
by two Morlet wavelet samples having a length of 49.
The averaged squared error between the 2 trous
algorithm output and the true CWT values is shown in
Figure 5 for m=1to 7.

In the Shensa algorithm, the lowpass filter was a
B-spline with binomial coefficients as impulse response

[6l:

— 1 r r r-1 r

8‘">-§(n+r/z) k=g @9
where r was 4 so that we had the same number of
non-zero lowpass filter coefficients as in the a trous
algorithm. The bandpass filter was computed from (12)
with L =24. The averaged squared error in this case is
also shown in Figure 5. The theoretical errors predicted
by (17) was also given.

It is clear that the Shensa algorithm outperforms the a
trous algorithm, giving more than 15dB improvement at
moderate scale values in this particular case. In addition,
the theoretical results are in close match with the
simulations, Other scaling functions such as 2 trous and
Daubechies were tested in the Shensa algorithm. The
B-spline function was consistently better.
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To conclude, we have examined the accuracy of
CWT computation by the & trous and the Shensa
algorithms. The theoretical study showed that the Shensa
algorithm can choose a bandpass filter such that the
squared error in CWT computation is always minimized.
As a result, the Shensa algorithm in general provides a
better accuracy than the a trous algorithm. The
Simulation studies have verified the theoretical
developments.
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Fig. 1 The MRA structure for CWT computation

1 2

29

s(n)

{2

m-1 m

23 (12— =k

..

Fig. 2 The filtering path in MRA to generate output at
stage m
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Fig. 3 A downsampling identity
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Fig. 4 An equivalence of the filtering path shown in
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Fig. 5 Comparison of accuracy between the a trous and
the Shensa algorithms
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