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ABSTRACT

In our previous work, we introduced a new class of
nonstationary stochastic processes whose spectral
representation is associated with the wavelet transforms and
established a mathematical framework for the analysis of
such processes [1]. We refer to these processes as affine
stationary processes. These processes are indexed by the
affine group, or ax+b group, which can be though of as a
group of shifts and scalings. Affine stationary processes are
nonstationary in the classical sense. However, their second
order statistical properties are invariant under the affine
group composition law.

In this paper, we show that any physically realizable
affine stationary process is a wavelet transform of the white
noise process. As a result, we derive a spectral
decomposition of the affine stationary processes using
wavelet transform. Additionally, we apply our resuits to the
fractional Brownian motion (fBm). We show that fBm is an
affine stationary process and the filter associated with the
fBm is a continuous time analyzing wavelet. Finally, we
apply our results to choose an optimal wavelet filter in the
development of a spectral representation of fBm via wavelet
transforms.

L INTRODUCTION

Our development of theory of affine stationary
processes is motivated by three facts: First, affine stationary
processes are natural candidates for modeling random
signals observed at multiple scales because, within the same
scale an affine stationary process reduces to an ordinary
stationary process, and across the scales to a class of self-
similar processes which we refer to as scale stationary
processes [2]-{4]. Second, we observe that a broad range of
physical processes of practical interest are affine stationary.
In particular, wavelet transform of the white noise process
and self-similar processes with stationary increments are
affine stationary. Third, and most importantly, we show that
affine stationary processes are precisely the class of
stochastic processes whose spectral decomposition is
associated with the wavelet transforms.

In this paper, we give several illustrative examples of
affine stationary processes. We show that any physically
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realizable affine stationary process can be represented as a
wavelet transform of the white noise process. In particular,
we derive the analyzing wavelet associated with the
fractional Brownian motion. Finally, we present an
orthonormal decomposition of the affine stationary
processes via wavelet transforms and apply our results to
develop a spectral decomposition of fractional Brownian
motion in the context of affine stationary processes.

The rest of the paper is organized as foliows. In Section
II, we review the affine stationary processes and define
some of the basic concepts. In Section III, we give examples
of affine stationary processes. In Section IV, we introduce
the spectral representation of affine stationary processes and
discuss the analyzing wavelet associated with the fractional
Brownian motion. Finally, in Section V, we discuss briefly
further items of interest in this context and conclude the
paper.

IL AFFINE STATIONARY PROCESSES
Definition 4.1: A stochastic process {X(a,b),n> 0,—ee<b< -}
is called affine stationary if it satisfies the following
conditions:

i) E|X(a,b) =const.  a>0,—ee<b<ee.
i) E||X(a,b 2>0,-co<bhcoo
i) E[X(a,b) (a,,b )|= E[X(M, Ab, +7)X(Aay Ab, +7)|

E[X(e,,5,)X(a b, !_ E[X(ha, 5, +, ))lc__(lu,,u, X(Aay, 0, +,)|
forall  4,,a,,A>0,. and —ee<b, b,,T<0e

Depending on whether the process satisfies first or second
condition in iii) or both we call it left, right and two way affine
stationary. We refer to @ and b as scale and shift indices,
respectively. From Definition 2.1, it immediately follows

that 1
E[X(a,,,)X(a,,b,)]= R, {:-:-,;z-(b,-b,)) 21a)

E[x(a,,bl)X(az,bz)]= R, %,b‘ —bZ%J.

Werefer to R, and R, as left and right affine autocorrelation
functions, respectively. Within the same scale, i.e.,
4, =4, =a, a left affine stationary process reduces to an
ordinary wide sense stationary process with the following
affine autocorrelation function:

E[X(a,0,)X{a,,))= R( = b))

and
(2.1b)

(2.2a)
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Hence, a left affine stationary process can be viewed as an
assemble of dilated ordinary wide sense stationary process.
On the other hand, across the scales for a fixed shift index,
i.e, b,=b, =b, the process reduces to a class of self-similar
processes known as scale stationary process [2]-[4]. In this
case, the affine autocorrelation function is given by

E[X(a,,b)X(a,,b)]:R,(%,O).

Likewise, a right affine stationary process is an ordinary
wide sense stationary process. However, unlike the left
affine stationary process, it exhibits the same ordinary wide
sense stationary behavior at all scales. To keep our
discussion simple, we shall restrict ourseives to the analysis
of left affine stationary processes. We now give some
examples of affine stationary processes.

(2.2b)

IIL. EXAMPLES
Example 3.1: Linear Affine Stationary Processes: Informally
speaking, ordinary linear processes are filtered white noise
processes whereby the filtering is the ordinary convolution
operation. In analogy to ordinary linear processes, we
propose a linear process via affine group convolution
operation. Consider the following process :

X(a,b)::/-l:f\l‘(%g B(t), a>0 -es<b<eo (3.1a)

where B(t), —ee<t < o is the Brownian motion process, and
¥ eL*(R,dt). We can show by direct calculation that the
process {X(a,b),u >0,—ee<b< -} is left affine stationary
with the affine autocorrelation function

E[X(a,b)x(l,O)]=R(a,b)=7‘:]\P(t)\y(f'a—" , (31b)

a>0, —eo<bcoo, If the filter ¥ satisfies the admissibility
o c!itioq f the continuous _wavelet transform (5], i.e.,
j{l ¥(w q}am = where ¥ is the Fourier transform of
¥, then {X( ,b),a>0,—~<b<~} can be viewed as the
wavelet transform of the continuous time white noise
process. In addition, the admissibility condition assures that
the affine autocorrelation function is square summable.
This, in turn, implies that the process is physically
realizable.
Example 3.2: In this example, we will show that the wavelet
transform of the fractional Brownian motion (fBm) is an affine
stationary process up to a multiplicative factor. The
fractional Brownian motion, {B,, (t),—=<t< u}, is a second
order nonstationary random process with parameter H,
0< H<1. It reduces to the standard Brownian motion for
H=1/2. Formally, it is defined as follows :

By (t)-B,(0)=YT(H+12)
{ T R }dB(V)+:!|t—v|"""d3(v)}
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and B,(0)=0 withprob.1, —ee<t<oe (3.2a)
Its correlation function is given by [6]
0.1
Ct,.t,)= T[|¢,|ZH ™ -ln - "),
where o7 = T'(1-2H)cos(rH) . 3.2b)

nH
Now, consider the following process:

X(a,b)=a" [¥(t)B,(at+b)dt, a>0,~e<b<os. (33)

where ¥ is a summable, zero mean analyzing wavelet , i.e.,

[l¥(t)pt < and [¥(t)it=0. By utilizing the self-
stmilarity property -of fBm, and using the correlation
function given in (3.2b) and the assumptions on the
analyzing wavelet, we obtain

E[X(a,,b,)X(a,,b,)] =

_az(:—*)H [ [w)¥e)

H . G4
a 1
U — =t ——(b, -] dudv
" 2 ( 2 1)

Hence, {X(a,b),a>0,~eo<b<es} is a left affine stationary
Emcess with affine autocorrelation function given as in (3.4).

Example 3.3: Let {S,,, (t),—e=<t< ..} be a finite variance, self
similar process with stationary increments and let H be its
self similarity parameter. Consider the following increment
process:

X(s5,8)=Sy(t+s)-Sy(t) 35

§>0,—00<t<oo.

For fixed s, the process s> 0,—e <t < e is an ordinary wide
sense stationary process. On the other hand, for fixed t, it is
self similar with parameter H. Indeed, it is left affine
stationary up to an amplitude factor because

X(As, M +7)=S, (M +As+7)-S,(M+1)
u{S, (A +2s)-5, (M)} maH{s,(t+5)-S,(t)} = l‘"X(s,&&
where = denotes the equality in the sense of finite joint
distributions. As a particular example, consider the

increments of the fractional Brownian motion introduced in
Example 3.2:

A(s,t)=s"{B, (s+1)-B, (1)},

It is straightforward to show that the left affine

§>0,—e0 <t <00, (3.72)

autocorrelation function of the process,
{A(s,t),s>0,—~<t<~},isgivenby
E[A(s,t)A(sh,st+1)] =
H 2H 26 2H 1" (3.70)
OIK'H{II+M' +r=1" -fe+2-1" -9 }
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Hence, affine stationarity provides a mathematical
framework to analyze self-similar processes with stationary
increments.

IV. SPECTRAL DECOMPOSITION OF AFFINE
STATIONARY PROCESSES
AND WAVELET ANALYSIS OF FRACTIONAL
BROWNIAN MOTION

The spectral decomposition of ordinary wide sense
stationary processes is achieved by Fourier transform. In
analogy, the spectral decomposition of affine stationary
processes is achieved by the generalized Fourier transform
of the affine group, namely the wavelet transform. In this
section, we shall develop a version of the spectral
decomposition theorem for affine stationary processes and
discuss briefly its practical implications in the analysis of
fractional Brownian motion. We shall motivate the spectral
decomposition of affine stationary processes via the
development of spectral decomposition of ordinary
stationary processes. First, we state the following theorem.
Theorem 4.1 : For any affine stationary process,
{X(a,b),a> 0,-0<h< -}, thereis a filter, f € L*(R,dt), such
that the process can be represented as a linear affine
stationary process in the mean square sense, i.e.,

1 ¢, (t=-b

X(a,b)—v-“- i f( — B(¢). a @1
Proof 4.1 : See (7] and (8.

We shall call feL}(R,dt) the linear affine filter
associated with X. Note that a similar observation can be
made for the ordinary wide sense stationary processes, in
which case the filtering is defined via the additive group
convolution or the ordinary convolution operation. For any
wide sense stationary process, X(t), —ee<t<os, there is a
filter, beL*(R,dt) such that X can be represented as
X(t)= [h(t—7)dB(z) in the mean square sense. Moreover,
under some regularity conditions, one can show that the
power spectral density function, S(®), of X(t), —se<t<eo
is given by S(m):ll-l(m)i2 where H(o) is the Fourier
transform of the filter i. The Parseval’s equality also
assures that |R|=|S], whereR is the autocorrelation
function of the process.

As an example to illustrate Theorem 4.1, consider the
increment process {A(s,t),s >0,-se<t< a-}, associated with
the fractional Brownian motion introduced in Example 3.3.
Using Eq. (3.2a), one can show that

1
A= THT 72

{'ﬂx-(-";—‘ .wds(v)-ﬂvT"r'wds(v)}’

s>0 and —eo<t<oo,

(4.2a)
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Let
1
)=t

—e<v<oo where u is the unit step function.

One can show easily that Ifl:o’, where o2 is the
variance of fBm. Hence f is the linear affine filter associated
with the Fractional Brownian motion. Figure 1 and 2 show
the behavior of the filter f for various parameter values of
H. Note that for Brownian motion, the affine is a square
wave with unit amplitude. The tail of the affine filter
becomes heavier as the self-similarity parameter H—1.
This is consistent with the fact that the long term correlation
of the fractional Brownian motion is stronger as H -1,
because the moving average or the affine filter assigns larger
weight to the past observations as the parameter H—1.0n
the other hand, for 0 <H <1/2, the energy of the filter
concentrates mostly between 0 and 1 indicating the short
term correlation of the fractional Brownian motion for
0<H<12. We now state the following important
observation:

Theorem 4.2 : For 1/2< H<1, the linear affine filter f
associated with the fractional Brownian motion process is a
continuous time analyzing wavelet.

Proof 4.2 : See 7] and [8].

Intuitively speaking, Theorem 4.1 and 4.2 imply that
inverse wavelet filtering of the fBm process, with analyzing
wavelet being the linear affine filter, whitens the fBm
process. This observation is rigorously stated in the
following spectral decomposition theorem. However, before
we introduce this theorem, let us recall the spectral
representation theorem of the ordinary wide sense
stationary processes. A wide sense stationary process can be
viewed as linear combinations of sinusoids whose
amplitudes form a nonstationary white noise process with
variance equal to the spectral density function of the
process, i.e, x(t)=Y e cw,, where {w,} is a white
noise process **with variance and

{1-v" " u(1-v)-f* " u(-v)}, @)

unit
¢, =|H(2nn)|= /5(27n). Similarly, we shall decompose an
affine stationary process into a linear combination of
orthonormal functions with amplitudes forming a non-
stationary white noise process whose variance satisfies a
Parseval type of relationship.

Theorem 4.3 : Let {X(a,b),a>0,—eo<b<~}, be an affine
stationary process and feL*(R,dt) be the associate linear
affine filter. Then for a given orthonormal time-scale
wavelet basis, {‘P“,n,me Z}, of L*(R,dt), the process has
the following representation in the mean square sense:

X(a,b)= .g:j’u (a,b)c, a0, 0

where ¥,.,(a,6)=(Vaf(a-+0). ¥, ) (f. ¥..)

Con=(f,¥..), and {w,.,n,meZ} is a zero mean, unit
variance white noise process. Moreover, if the affine

4.3a)
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autocorrelation function R of the process is square
summable, the decomposition satisfies the following
Parseval’s relationship in the mean square sense:

el

where C, is a constant given by $he Fourier transform f of
the filter f namely, C ﬂf(m)' oldo.
Proof 4.3 : See {7] and [8] -

One can easily show that {'P,_,,n,mez} forms an
orthonormal basis for the wavelet transform domain (7}-(8].
We shall refer the variance l“'-—-r of the non-stationary
white noise process, {c,_w__}, as the spectral density
function of the affine stationary processes. Theorem 4.3
implies that any physically realizable affine stationary
process is a wavelet transform of the white noise process.
The key issue in the analysis of affine stationary signals is
the choice of the analyzing wavelet in order to simplify the
spectral decomposition. In the case of fBm process,
simplification of the representation means representing the
process by a linear combination of orthonormal functions
and white noise process in which only a small number of
coefficients is non-zero. Intuitively speaking, the best
analyzing wavelet is the linear affine filter associated with
the process because, it leads to a single non-zero coefficient
in the spectral domain. However, in practice since the
parameter H is unknown, such an approach is not
applicable to the processing of real data. Instead, depending
on the signal processing task, one may need to choose a
suboptimal wavelet filter among the filters described in
(4.2b).

L j j RO 5 Sde= 3 (43b)

V. CONCLUSION

In this paper, we reviewed a new class of nonstationary
signals for the analysis of seif-similar and multiresolution
signals. We developed basic concepts, such as
autocorrelation function and shift and scale indices. We
presented the utility of the proposed class by several
examples of practical interest, and developed a
mathematical framework for the analysis of the proposed
class. In particular, we showed that any physically realizable
affine stationary process is a wavelet transform of the white
noise process. Also, we developed an orthonormal
decomposition for affine stationary processes using wavelet
transforms. Additionally, we showed that fractionai
Brownian motion can be viewed as an affine stationary
process. We derived the wavelet filter associated with the
fractional Brownian motion. We showed that inverse
wavelet filtering whitens the fractional Brownian motion
and comment on how one can choose the appropriate
wavelet filter for a given signal processing task.

We shall report the application of affine stationary
processes in wide band and mutiresolution statistical signal
processing in our future work.
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Continuos time wavelet filters associated with the
fractional Brownian motion for 0< H < 1/2.

Figure 2

Affine Filtem for 1/2<Hc1
—r——

P————

T

H=095

Continuos-time wavelet filters associated with the
fractional Brownian motion for 1/2< H <1.
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