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ABSTRACT

The classical Linearly Constrained Minimum Variance
(LCMYV) Beamformer corresponds, in the general case, to
the Linear, Time Invariant (TTI) and Spatio-Temporal (ST)
complex filter which output power is minimized under
some linear constraints. Optimal for stationary signals,
this Beamformer becomes sub-optimal for (quasi)-
cyclostationary observations for which the optimal
complex filters are (poly)-periodic (PP) and, under some
conditions of non circularity, Widely Linear (WL). Using
these results and the fact that PP filtering is equivalent to
FREquency SHifted (FRESH) filtering, the purpose of
this paper is to present a first extension of the classical
LCMV Beamformer, taking into account the potential
(quasi)-cyclostationarity and non circularity properties of
the observations. This new Cyclic LCMV Beamformer is
shown to have an equivalent Cyclic Generalized Sidelobe
Canceller (GSLC) structure. The performance computation
of this new Cyclic Beamformer shows the interest of the
latter in cyclostationary contexts and opens a reflexion
about the optimal constraint choice.

1. INTRODUCTION

The classical LCMV Beamformer [1] corresponds, in
the general case, to the Linear, TI and ST complex filter A
which minimizes, under somi linear constraints, the
power of the output, y(t) = &' X(¢), where X(#) is the
vector of the complex envelopes of the ST observations at
the output of the sensors. Limiting the analysis to the
exploitation of the second order statistics of the data, it has
been shown recently in [2] that this classical approach of
array filtering is optimal only for stationary signals and
becomes sub-optimal for non stationary and in particular
for (quasi)-cyclostationary observations, omnipresent in
radioccommunications contexts, which statistics are (quasi)
or (poly)-periodic and which complex envelope may be
second order non circular [3]. More precisely, for (quasi)-
cyclostationary observations, the optimal complex filters,
in a mean square sense, become PP [4-5] and, under some
non circularity conditions, WL [6], i.e. of the form y(:) =
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ri(OTX () + hy()TX(1)*, where * means complex
conjugate and where ky(f) and ky(t) are TV and PP
complex filters. Using the previous results and the fact
that PP filtering is equivalent to FRESH filtering {4-5],
the purpose of this paper is to present a first extension of
the classical LCMV Beamformer, taking into account the
potential (quasi)-cyclostationarity and non circularity
properties of the received signals. This new Cyclic LCMV
Beamformer is shown to have an equivalent Cyclic GSLC
[7] structure. The performance computation of this new
Cyclic Beamformer shows the interest of the latter in
(quasi)-cyclostationary contexts and opens a reflexion
about the optimal constraint choice.

2. PROBLEM FORMULATION

Consider an array of N Narrow-Band (NB) sensors and
let us call x(f) the vector of the complex envelopes of the
signals present at time ¢ at the output of the sensors. Each
sensor is assumed to receive the contribution of a useful
cyclostationary signal, P cyclostationary jammers and a
background noise. Under these assumptions, the
observation vector x(f) can be written as

P
x(1) = s(t) A0 4 N 1) SOCED g piy)

=1 @.1)

where b(?) is the noise vector, assumed spatially white and
stationary, s(f), Awg, ¢o and s are the complex envelope,
assumed zero-mean and cyclostationary, the carrier residue,
the phase and the steering vector, assumed known or
estimated, of the useful signal respectively, whereas m;(t),
Aw;, §; and J; are the complex envelope, assumed zero-
mean and cyclostationary, the carrier residue, the phase and
the steering vector of the jammer { respectively.

Under the previous assumptions, for a given ST
observation (VL x 1) vector X(1) 8 (T, x(t~)T....,
x(t— 1tL.1) )T, the classical LCMV Beamformer
corresponds to the Linear, TI and ST (NL x 1) complex
filter k 2 (AT, 1y T...., 11T, which minimizes, under
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some linear constraints of no useful signal dlstortmn in its
classical form, the temporal mean, <E[Iy(t)l 1>, over the
observation window [0, T], of the instantaneous power,
Elly()2], at the output y(¢) of the filter, defined by

L-1
¥0 = KX = Y hlxe- 1) @2)
i=0

where 1o = 0. Note that although ST structures may be
interesting for NB signals, they are mainly used for Wide
Band (WB) signals, whereas for NB signals
instantancously mixed, only Spatial filters are generally
considered, which means that L = 1 and X(r) = x(#). In this
case, the linear constraint of no useful signal distortion
can be written as his=1 and the classical LCMV
Beamformer for NB signals is a particular case of the well
known Spatial Matched Filter (SMF),

In the presence of P cyclostationary signals, the
observation vector X(?) is, in the general case, quasi-
cyclostationary and the Linear and TI structure defined by
(2.2) becomes sub-optimal {2]. In these conditions, the
optimal complex filters are PP {4-5] and, under some
conditions of non circularity, WL [2] [6], which means
that, for the given ST observation vector X(f), their
output can be written as

YO = m©TxE) + notxe*

L-1
= Y miotxe-) + 2 ha) T x(e - )* 23)
i=0 i=0

where the complex filters A1(?) and A2(f), and thus the
complex filters &1,(¢) and A1), (0 <i <L - 1), are PP
filters. As a consequence, the filters 1), A2(¢) and their
complex conjugate have a Fourier serial expansion and we
can write, for L1 <m<2and0<i<L -1,

hnil)” = ), B 2Ok (2.4)

k

where the vectors ki correspond to (N x 1) TI complex
filters and where the cyclic frequencies ;. are related to
the cyclic frequencies of the observations. Using (2.4) into
(2.3), the optimal filters output, for the given ST and
quasi-cyclostationary observation vector X(f), can be
written as

Wy = 2.3)
L1

DI ITAL (RS i L PP Ry

k i=0

which is the sum of FRESH TI filters outputs. However,
in practical situations, only a finite number M of cyclic
frequency and of TI filters can be used and we only
consider, in the following, PP filters with M input
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vectors, called Mth-order PP filters, which output can be
written as

M
0 = mTx@) + Y mlxe- )% 27 (26)
1=2
where, for 1 SI<M, hjisa(N x 1) TI complex ﬁltcr A,
€ (T Troe » TL1), =11 withx 12 x and x - 4,
and oy is a cyclic frequency of the observauon. Note that
the 1st-order PP filter, defined by (2.6) with M = 1, is the
classical Linear, TT and Spatial filter, whereas for M > 1,
the Mth-order PP filter defined by (2.6) is Linear if all the
{; are equal to 1 and WL in the other cases, TI if all the oy
are zero and TV otherwise, Spatial if all the A; are zero and
ST in the other cases.

Under all the previous assumptions, the problem we
address in this paper is to find the M TI complex ﬁlters hy,
(1 £1< M), minimizing the temporal mean, <E[Iy(t)| 1>,
of the instantaneaous power, E[Iy(t)l 1, at the output, y(t),
of the filter (2.6), under a constraint of no useful signal
distortion, i.e under the following linear constraints

hits=1andnfs% =0, 2<1<m) @7

The Cyclic LCMV Beamformer solution to the previous
problem is, for NB and quasi-cyclostationary observations,
a first Mth-order PP extension of the classical Linear, TI
and Spatial LCMV Beamformer which corresponds to a
particular version of the SMF. Note that the optimal
choice of the parameters (A, {;, o), 2 <1 < M, will be
guided by the results of the Cyclic LCMV Beamformer
performance analysis, presented in section 5.

3. OPTIMAL CYCLIC LCMV BEAMFORMER

Defining the M (MN x 1) vectors S; 2 [07, .., 0T,
s® T oT . 0TJT, (1 <1< M), which non zero
components are comprised between the indices (! — 1)N +
1 and IN, the (MN, x M) matrix S 48, S,...., Sy, the
(M x 1) vector f & [1,0, ..., 0], the (MN x 1) vectors
H 20T, &,T, ., hMT]T and X(1) & [x(%l
exp(i2rot) x(1 A . ex¥02naut) x(t— Ay)
TT and noting R x(t) E[X(t)X(t) the correlation matrix
of X(t), the filter H,, solution of the previous problem is
obviously [1] given by

Hy = <Re(0>~! S (ST<R>718)Y 1 (3)

Note that for M = 1, the expression (3.1) gives the
classical Linear, TI and Spatial LCMV Beamformer which
corresponds to the well-known SMF and which is defined
by

ko =

TR (0> <R (> ls 32)

where Rx(t) £ E(x(t) x(®1] is the correlation matrix of
the observation vector x(f).
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4. EQUIVALENT CYCLIC GSLC
STRUCTURE

To show that the Cyclic LCMV Beamformer (3.1) has
an equivalent GSLC structure, let us consider a full rank
((N - 1) x N) complex matrix A such that A s = 0.
Then, the space orthogonal to s corresponds to the one
spanned by the vectors ATw when w spans C¥1 Asa
consequence, for each (N x 1) complex vector &;, 1 <i <
M, it exists a (N — 1) x 1) vector w;, such that

h; = (s'rs)_1 sthp)s - ATw,- 4.1

Using (4.1) and (2.7) into (2.6), we obtain another
expression of y(f) under the constraints (2.7) given by

¥ = ye() — ya(D) 4.2
where
ye@® & 6T stxe @3)

M
ya® & itz + Y, wilze - apb 250 (44

1=2
A
Z() = A x(0) 4.5)
x(1) %® ¥
Conventional |
Beamformer
Blocking 2 MmA-:pur
Matri ve
Filter
7
Figure 1. Equivalent GSLC structure of the Cyclic
LCMV Beamformer

The previous expressions show that the Cyclic
LCMYV Beamformer defined by (3.1) has an equivalent
GSLC structure depicted at figure 1, where y.(1), defined
by (4.3), is the output of a Conventional Beamformer in
the direction of the useful signal whereas y,4(t), defined by
(4.4), is the output of a Mth-order PP filter which input,
z(t), defined by (4.5), is an observation vector containing
no useful signal. Thus, implementing the Cyclic LCMV
beamformer (3.1) is equivalent to implement the Cyclic
GSLC structure of figure 1 where the vectors w;, (1<i<
M), minimize the MSE between y.(¢) and y,(f).

5. CYCLIC LCMV BEAMFORMER
PERFORMANCE

Using (3.1), the Signal to Interference plus Noise
Ratio (SINR) at the output of the Mth-order Cyclic
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LCMYV Beamformer, noted SINR,[M], can be computed.
Note that the output SINR is defined, in the paper, by the
ratio between the temporal mean of the output
instantaneous useful signal power and interference plus
noise power respectively. After some elementary algebraic
manipulations, we obtain

Rg

F(ST<Rpw>718)7Yf

which gives, for M = 1, the expression of the SINR at the
output of the SMF, given by

SINR,[M] = é.1

SINR,[1] = x, sT<R(f)>" s (5.2)
where xg 4 <E[|s(t)l2]>, <R p(f)> corresponds to <R {(f)>
in the absence of useful signal and <R(¢)> is the temporal
mean of the input interference plus noise correlation
matrix.

5.1 One jammer case (P = 1) with M =2

Assuming P =1in (2.1) and M = 2 in (2.6), the
expressions (5.1) and (5.2) can be developed and the gain
in SINR, G{2], obtained in using (3.1) with M = 2 instead
of the SMF and defined by the ratio between SINR,[2] and
SINR,[1], can be computed and written, after tedious
computations and for T = + oo, as

e3P0 52 (1l 512)

[1+€(1-loy s [1+8+€(1-lo ) (1+€(1-YD))]
(5.3)
where o) is the spatial correlation coefficient between the
jammer and the signal, defined by the normalized i mner
product of Jiand s, € = A Jlf.l 1<m1 ()>/<n2(t)>, nl(t) £
E[lml(t)l 1, <na(t)> is the background noise power per
sensor and v, (0 <y < 1), is a jammer's normalized cyclic
correlation coefficient defined by

v 2 I<Emy (Ohmy (1-8) "2 el (162401 21000 o (s
54

The expression (5.3) shows that the Cyclic LCMV
Beamformer does not improve the output performance
with respect to that of the SMF (G[2] = 1) in the absence
of jammer (€ = 0), when the latter is orthogonal (lojsl =
0) or colinear (la1sl = 1) to the useful signal or when the
normalized cyclic correlation coefficient of the jammer is
zero (y = 0). In the other cases, G[2] is an increasing
function of vy which does not depend on the signal's and
jammer's phase. As a consequence, to maximize the gain
in SINR at the output, the parameters (A3, {3, 0z) must
be chosen so as to maximize vy, which can be done after an
a priori estimation of the cyclic correlation function of the
observations. For example, for a BPSK jammer we have

GR2]1=1+

3791



to choose Az = 0, {3 =—1 and 2ro; = 2A0;.

Nevertheless, the expression (5.3) shows that the gain
G[2] is always upper-bounded by 2, which is relatively
weak compared to that obtained in some cases in
radiocommunications with particular 2th-order PP filters
when a reference signal correlated with the useful signal is
available [2] (8]. In fact, this weak value of the gain in
SINR obtained in using a 2th-order Cyclic GSLC structure
in (quasi)-cyclostationary context instead of the SMF has
already been found in [9] in using 3th-order or Sth-order
Volterra GSLC structures in non Gaussian contexts, These
results are directly related to the constraints of no useful
signal distortion, chosen in this paper (2.7) and in [9] to
obtain a first Cyclic or Volterra extension of the classical
LCMYV Beamformer respectively, which are obviously too
strong to obtain higher gain in performance. This remark
shows off the problem of the optimal constraints choice,
which may be solved for example by a maximum
likelihood approach and which will be presented in another
paper. These results are illustrated in Figure 2 which
shows the variations of G[2] as a function of the DOA of
the jammer for several values of y and for a ULA of 4
SEensors.

6

Fig. 2 - G[2] as g function of 8;
65 = 0° ULA, N = 4,INRI = <m(t)>I<m(t)> = 16 dB

5.2 Two jammers case (P = 2) with M =2

In the case of two jammers, the gain G[2] is, in
particular, a function of the phase difference y between the
two jammers. Although this gain remains relatively weak
in most cases, there are some situations for which this
gain can be higher as it is shown on figure 3 which shows
the variations of G[2] as a function of  for several values
of 9, the y coefficient of the jammer 2, and for an ULA
of 3 sensors.
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Fig. 3 - G/[2] as a functionof y,ULA,N =3,y =1
O5=0° 8] =12°6) =45°INRI = 16 dB,INR2 =20dB

6. CONCLUSION

A first Cyclic LCMV Beamformer has been presented
to improve the performance of the SMF in (quasi)-
cyclostationary contexts. This new beamformer has an
equivalent Cylic GSLC structure which associated
constraints on the useful signal prevent from obtaining
high gain in performance in most situations. This opens a
reflexion about the optimal constraint choice which will
be presented in an other paper.
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