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ABSTRACT

In this paper methods are developed for enhancement and

analysis of autoregressive moving average (ARMA) signals
observed in additive noise which can be represented as mix-
tures of heavy-tailed non-Gaussian sources and a Gaussian
background component. Such models find application in
systems such as atmospheric communications channels or
early sound recordings which are prone to intermittent im-
pulse noise. Markov Chain Monte Carlo (MCMC) simu-
lation techniques are applied to the joint problem of sig-
nal extraction, model parameter estimation and detection
of impulses within a fully Bayesian framework. The al-
gorithms require only simple linear iterations for all of the
unknowns, including the MA parameters, which is in con-
trast with existing MCMC methods for analysis of noise-free
ARMA models. The methods are illustrated using synthetic
data and noise-degraded sound recordings.

1. INTRODUCTION

We present here a fully Bayesian approach to the analysis
and extraction of ARMA signals observed in both impulsive
noise and continuous background noise. Bayesian compu-
tations are performed using a Markov chain Monte Carlo
(MCMC) simulation technique based around the Gibbs
sampler [2, and references therein)].

The framework presented is quite general, allowing for
a full ARMA model with impulsive noise in both excita-
tion sequence and observation noise. Special cases of the
methods will be of use in less testing conditions; in partic-
ular noise reduction for pure AR or MA processes is easily
achieved, as is noise reduction for simple Gaussian noise
with no impulsive elements. The methods are likely to be
of use in areas such as the enhancement of degraded sound
recordings and baseband processing of analogue communic-
ations channels.

2. SIGNAL AND NOISE MODELS

It is assumed that some underlying signal z, is observed in
additive independent noise v;:

Yt = Tt + vt (1)
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2.1. Signal Model

We consider the Autoregressive Moving Average (ARMA)
model for the underlying signal z:

_ 5(1)
o e @
where L is the unit delay, (L) =1 -6 L — ... —§,L7 is
the MA polynomial and ¢(L) =1 —¢1L— ... — ¢, L? is the

AR polynomial, with ¢ < p. This ARMA(p,q) process is
assumed to be minimum phase and stationary so that all
poles and zeros lie strictly within the unit circle. We will
also assume that no pole is equal to any zero so that pole-
zero cancellation will not occur in %E%. These conditions
ensure a unique ARMA representation [4, section 6.4].

In order to facilitate MCMC sampling we use a factoriz-
ation of the ARMA model into a pure AR process u: cas-
caded with an MA filter:

1,
o)

This factorization ensures Gaussian conditional likelihoods
for both the AR and the MA coefficients when the ARMA
process is observed in additive noise, as noted by [5].

The observation equation (1) and factorized ARMA rep-
resentation (3) are readily combined into state-space form
(not detailed here) which will allow the use of efficient
Kalman Filter-based simulation methods in the estimation
scheme.

(3)

z¢ = O(L)ue, ur =

2.2. Noise Models

e: and v, are i.i.d. processes. Non-Gaussian impulsive ele-
ments are included in the same way as in [1]:

ve ~ N(0, (1 — iz)ol +itgiol) 4
et ~ N(0, (1 = ji)o? + jrhiol (5)

where N (g, 0%) denotes the univariate normal distribution.
Here the i; (j) are (0/1) indicator variables which switch
a noise component between a continuous background com-
ponent with variance 62 (¢?) and a volatile impulsive com-
ponent with variance gZoZ (h?c?). Note that g; and h: are
time-varying unknown parameters to be determined from
the data. Such a model has been found to be flexible and
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robust in the treatment of impulsive noise from various
sources [6, 1]. This noise modelling framework is quite gen-
eral, allowing for many types of non-Gaussian interference.
Useful special cases which can be obtained from the general
framework include:

1. 4¢(or j¢) = 0, Vt - pure Gaussian noise

2. 2(or j;) = 1, Vt - heavy-tailed scale mixture of Gaus-
sians

In the general case of (egs. 4,5) we obtain a mixture of
Gaussian background noise and a heavy-tailed scale mix-
ture of Gaussians. The precise form of the scale mixture
of Gaussians is determined by the prior distribution of the
mixing constants ¢g; and hs and can include, for example,
the Student-t, a-stable or Generalized Gaussian distribu-
tions {7, and references therein].

For computational convenience we describe here only the
case where the prior distribution for each of the unknown
‘scale’ parameters from V = {02,02,97,h%,1 <t < N} is
of inverted-Gamma form, as in [1], corresponding to the
Student-t form of scale mixtures. We will report on the use
of other forms of mixing distribution, in particular those
leading to the o-stable distribution, in future work. Also,
as in [1], we assume a 1st order Markov dependence for the
indicator variables 3; and j;, which models the observed
temporal clustering of impulses in many physical systems.

3. MCMC COMPUTATION

Computations are performed using a Markov chain Monte
Carlo (MCMC) scheme which draws samples according to
the posterior distribution for the unknown quantities. The
primary aim of this work is to obtain an estimate of the un-
derlying data z; from its marginal posterior density p(x|y),
where x and y are vectors made up from N consecutive
elements of z; and y:, respectively. Of course, a useful by-
product of such a general method as MCMC is the possib-
ility of studying the posterior distributions of other system
parameters at the same time, and these will be useful both
as empirical convergence diagnostics and for applications
where a full model analysis is the goal.

3.1. Gibbs Sampler

The scheme is implemented using a form of MCMC called
the Gibbs sampler [2]. We first define some useful notation.
The ARMA excitation sequence e; and the signal z; may be
expressed in matrix-vector notation for a contignous block
of N signal values x using (3) as:

e=Au=u; — Uso (6)
x = Bu=u; — Uy )

Here e denotes an N-vector of excitation samples,

u = [uf,ul)? contains the initial ‘state’ vector up =
[4—p+1,-.- ,u0]”, and the N succeeding values u; =
[u1,...,un]T. Also, define ¢ = [¢1,¢2,...,8p]" and
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0 =1[61,62,...,6,]7. Finally A, B, U and Uy are matrices
constructed in such a way as to generate the e;’s and z;’s
in the correct row order.

The Gibbs Sampler requires the full conditional posterior
distribution for each unknown quantity. In our case the un-
knowns are u, 8, ¢, i = [i1,... ,iN], j = [j1,..- ,jn] and
V = {0?,02,9?,h?,1 < t < N}. The method is iterative
and involves sampling with replacement from each condi-
tional distribution in turn. It is often advantageous for
speed and reliability of convergence to group several un-
knowns together into a single sampling step, when this is
convenient computationally, and we do this for u, i and j.

The (i + 1)th iteration may be then be summarized as:

LV~ p(VIG, ¢, w5, )

2. 0i+1 ~ p(0|¢1” ui, ii,ji, Vi+1, y)

3. ¢i+1 ~ p(¢|0i+11 lli, ii,ji’ Vt'+l’ y)

4. {u,i,j}* ~p(u,i, jlo"H, ¢, Vit y)

After a ‘burn-in’ period the resulting Markov chain con-
verges and subsequent samples can be thought of as (de-
pendent) draws from the joint posterior distribution for all
unknowns. Monte Carlo estimates can then be made for
any desired marginal quantity simply by forming ergodic
averages from the converged samples.

The required conditional distributions can be derived
from the following likelihood expressions which are obtained

directly from the modelling assumptions, coupled with the
prior distributions on the unknown parameters:

p(y]u, 01 ¢1 i:j; V) = p(Yluv 0: Ev) = NN(y - XIO; 21})
p(llllllo, 0’ ¢7 iajv V) = p(u1|u07 ¢) 28) = NN(e|O7 28)
p(u0I07 ¢1 i)j: V) = p(u0|¢a 28) = Np(moa A0_1)

where e and x are as given in (6) and (7) and . = diag((1—
j)al +jehial, t=1,...,N) and B, = diag((1 — i¢)o2 +
itgiol, t =1,...,N) are the noise covariance matrices. mq
and A;! are the mean and covariance matrix for the initial
state vector. With no prior information about ug, mo = 0
and Ay ! is simply the covariance matrix for p elements of
a stationary Gaussian AR process (¢,a2) [4, section A.7].
Alternatively, mo = 0 and )Aj ! can be used to encourage
continuity with an earlier section of processed data when the
methods are applied in segmental fashion to large amounts
of data.

The full conditionals, assuming Gaussian priors
No(me, A;") and Ny(mg, ;') for 0 and ¢, respectively,
are then obtained from straightforward manipulations
of the above probability expressions. We do not detail
their precise form owing to space limitations. However,
the resulting expressions are very closely related to those
obtained for the AR case in [1]. Full details for the ARMA
case are given in [8)].

There are several important points to note about the con-
ditional sampling operations:

3798



¢ MA parameters . The conditional distribution for
the MA parameters, required in step 2. of the iteration
is multivariate normal. This results from assuming
non-zero observation noise and means that the MA
estimation step involves only simple linear operations.

¢ Signal u and indicators i and j. Asin [1], sampling
step 4. is reduced to a simpler scheme which draws
each triple {u,1s,j:} conditional upon the rest. Also
as in [1] we occasionally substitute a sampling step
which draws each of u, i and j from their conditionals
using fast Kalman Filter-based sampling (see e.g. [9]
and others).

e Stability and invertibility. These are enforced
upon the AR and MA parameters by rejection
sampling, as in [3].

e Near-cancellation of poles/zeros. This will gener-
ally mean that the model order has been selected too
high. We can avoid the numerical problems associated
with this by incorporating a prior constraint which dis-
allows models with poles very close to zeros. This is
implemented by rejection sampling in a similar way to
the previous point.

4. OTHER ISSUES

We note without stating the detail that it is straightforward
to incorporate non-white noise sources and indirectly ob-
served outputs with known transfer functions into the same
framework, by inclusion of additional linear filtering oper-
ators in the model. Further modifications will include the
development of informative priors which are suitable for use
with real acoustical signals, time varying models and model
order selection (including detection of source presence). All
of these can be achieved naturally within a Bayesian nu-
merical framework.

5. EXAMPLES

The methods are first applied to a synthetic
ARMA(4,1) process with coeficients ¢ =
[2.8826, —3.8438, 2.8351, —0.9703] and 6 = [0.9]. There
are additive observational outliers (i = 1) of amplitude
1000 and 300 at sample numbers 200 and 600, respectively,
and an innovational outlier (j: = 1) of size 300 at sample
number 400.

Figure 1 shows the noisy ARMA data and figure 2 gives
the corresponding estimated MMSE reconstruction of x.
(i.e. the arithmetic mean of the data samples following a
‘burn-in’ of 200 iterations) . Comparison with the true ori-
ginal data shows a noise reduction of about 8dB. Figure
3 shows normalized histograms of the outlier indicators,
showing high probabilities at the correct outlier positions
plus one ‘false alarm’ around sample number 710. Figure
4 gives some posterior analysis of parameter values follow-
ing the burn-in period. Histograms are centered around the
true model parameter values.
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Figure 5 shows a 1100-sample extract from an early mu-
sical recording. Here we employ an ARMA(15,5) model for
the data. The resulting estimated MMSE reconstruction is
given in figure 6, in which both impulse and background
noise have visibly been removed. The indicator histograms
are given in figure 7. The impulsive noise has clearly been
identified and there is little evidence for any innovational
outliers in this section of data. The estimated ARMA power
spectrum is given in figure 8, which indicates the sort of
‘low-pass’ spectrum one might expect from an early record-
ing.
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Figure 1. Noisy ARMA(4,1) data
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Figure 2. Reconstructed ARMA (4,1) data
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Figure 3. Outlier probabilities for ARMA (4,1) data
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Figure 4. Parameter analysis for ARMA(4,1) data
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Figure 5. Noisy gramophone recording
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Figure 6. Reconstructed gramophone recording
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Figure 7. Outlier probabilities for gramophone re-
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Figure 8. ARMA(15,5) power spectrum for gramo-
phone data
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