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ABSTRACT

The Barankin bound is the greatest lower bound on
the variance of any unbiased estimate for a nonrandom
parameter. Computing this bound yields, as a byproduct,
an unbiased estimator that is at least locally best in the
following sense. The estimator formula contains a
reference parameter; when the unknown parameter happens
to be equal to the reference, the variance of the estimate
achieves the Barankin bound. If the dependence of the
Barankin estimate on the reference parameter vanishes,
then the estimate is also uniformly minimum variance.

We obtain a simple derivation of the Barankin bound
as the solution of an unconstrained convex quadratic
optimization problem. In contrast the standard form of
the Barankin bound involves the maximization of a ratio
of quadratic quantities. For the case of PET inversion and
natural gamma ray spectrometry, the Barankin estimate is
only locally minimum variance, but it can be a viable
alternative to the maximum likelihood estimate.

1. INTRODUCTION

Maximum likelihood (ML) estimation and the
Cramer-Rao (CR) lower bound constitute the standard
tools of nonrandom parameter estimation for statistical
signal processing [1]. No unbiased estimate has variance
that is smaller than the CR bound, and if any unbiased
estimate everywhere has variance that is equal to the CR
bound (an efficient estimate), it is the ML estimate.
Moreover, under fairly general conditions, for high signal-
to-noise ratios the ML estimate asymptotically is
unbiased with variance equal to the CR bound. It is
recognized widely, however, that the CR bound can be
misleadingly optimistic.

In 1949, Barankin derived the greatest lower bound on
the variance of any unbiased estimate [2] - [4]. The
computation of the Barankin bound implicitly involves
the construction of an unbiased estimate that is at least
locally minimum variance, and that for some cases may
be uniformly minimum variance. As engineers tackle
progressively more difficult estimation problems the
determination of the CR bound often is a major
computational task. Since numerical calculations are
required anyway, why not use the more powerful Barankin
bound? An even more intriguing prospect is the
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possibility of replacing ML estimates with Barankin
estimates. Two obstacles to this goal are the difficulty of
computing the Barankin bound, and the absence of simple
explanations of the theory.

The contribution of this paper is a simple derivation
of the Barankin bound as the solution of an unconstrained
convex quadratic optimization problem. In contrast the
standard form of the Barankin bound involves the
maximization of a ratio of quadratic quantities. We
illustrate the theory with examples where efficient
estimates do not exist, and where the Barankin bound is
obtained analytically. For two cases the Barankin
estimate is also uniformly minimum variance, while in
the third case, associated with PET inversion and natural
gamma ray spectrometry, the Barankin estimate is only
locally minimum variance. However this locally
minimum variance estimate happens to be a viable
alternative to the ML estimate.

2. NEW DERIVATION OF BARANKIN
BOUND
We observe a random vector, r, whose probability
density, ppja(RIA), depends on a vector of M nonrandom

unknown parameters, a, where a is contained in some
parameter space, ©. An estimator, 4(R), is an M-
component vector-valued function of the observation.
The estimate is unbiased if E{&(R)IA }=A, VA€ ©.

We introduce an M-component random vector, Z,

Pria(RIB)
Z = f B >
Bej B( )prla(RlA)

where f(B) is an as-yet unspecified M-component function
of an M-component vector, on a set B. The MxM
correlation matrix of Z is

D

E{ZZTIA} = [ [ko(B,O®BXT(C)BIC, ()
Be BCef
where kyp (B,C) is a scalar-valued, symmetric,
nonnegative-definite kernel,
Pria(RB)pa(RIC)

kA(B,C) - E{ rla ria - } . 3)

Pria(RIA)ppa(RIA)

For any unbiased estimate, the MXM correlation matrix

between the estimation error and Z, for suitable B, is
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E{[AR)-A1ZTI1A} = [ [B-ANT(B)B. @
Be B
Theorem 1 For any unbiased estimate, the error
covariance matrix is lower-bounded as follows,
E{[AR)-AIIAR)-A)T 1A} >

| (IB-AY,B)+{,B)B-ATdB
Bep

- | [kABOEBILC)MBIC, )
BepCep

where f4 (B) is chosen to maximize the trace of the right-

hand-side (r.h.s.). The bound is satisfied with equality,
for some A, if and only if the unbiased estimate satisfies
the following, with probability one,
RIB
AR)=A+ | fA(B)%dB. ©
Bep Pria )
An unbiased estimate that satisfies the Barankin bound
with equality is unique. ¢
Proof The difference between the estimation error and Z
is itself a random vector whose correlation matrix must be
nonnegative-definite,

E{[A&R)-A-Z)[AR)-A-Z]T 1A} 2 0. o)
Expanding this correlation matrix, using (2) and (4), and
rearranging the expression, gives a lower bound on the
error covariance matrix of the form (5), that is valid for
any f(B). We choose f(B) to maximize the trace of the
bound. If the trace is unbounded there is no finite-
variance unbiased estimate. If the trace is bounded, then
we apply calculus of variations to obtain an integral
equation for £, (B),

0=(B-A)- [ks(B,Of(C)C,VBeB. ()
Cep

For a particular value of A, if an unbiased estimate
satisfies the bound (5) with equality, then (7) must hold
with equality, so the error vector is equal to Z with
probability one; this condition is equivalent to (6).
Conversely if an unbiased estimate satisfies (6), where
fo(B) satisfies (8), then the covariance matrix for the
difference of the L.h.s and r.h.s. of (6) is equal to zero.
Expanding this expression implies that (5) is satisfied
with equality.

Suppose that two distinct unbiased estimates satisfy
the Barankin bound with equality for some parameter
value, A. Then each estimate has the representation, (6),
for a distinct f4 (B). Taking the mean-square difference of
the two estimates using (2) and (3) gives zero, implying
that the two estimates are equal with probability one. ¢

The relation (6) can be interpreted as a formula for an
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estimator, provided A is a user supplied reference
parameter, rather than the unknown value of a; the point
is that a legitimate estimate depends only on the
observation, and not on the unknown value of a. This
estimate is unbiased and at least locally minimum
variance.

Theorem 2 Suppose that the trace of the right-hand side
of (5) is bounded. Then the estimate, (6), is unbiased and
locally minimum variance, i.e. when the value of the
unknown parameter is equal to the reference parameter, the
error covariance satisfies the Barankin bound with
equality. Furthermore, if the dependence of the estimator
formula (6) on the reference parameter vanishes, then the
estimate is uniformly minimum variance. ¢

Proof Suppose that A is the reference parameter and that
C is the actual value of the parameter. Taking the
expectation of (6), conditioned on C, and using the fact

that fo (B) satisfies the integral equation (8), gives

E{&(R)IC}=C, so the estimate is unbiased. If the
unknown value of the parameter is equal to the reference
parameter, i.e. A«C, then we have an unbiased estimate
that satisfies the condition (6), so Theorem 1 implies that
the estimate satisfies the Barankin bound with equality,
and it is locally minimum variance.

If the estimator formula (6) happens to be
independent of the value of the reference parameter, then
for any C we can change the reference parameter, C+A,
without changing the estimate; then condition (6) of
Theorem 1 applies and we conclude that the estimate
satisfies the Barankin bound with equality, so the estimate
is uniformly minimum variance. ¢

Can a locally minimum variance unbiased estimate
be useful? That depends on how close the unknown
parameter is to the reference parameter, and how sensitive
the estimate is the value of the reference parameter.

3. COMMENTS
The conventional form of the Barankin bound can be
obtained from (5) by replacing f4 (B) by Hg(B), where H
is an MxM matrix that is constant with respect to B, and
g(B) is an M-component vector-valued function.
Choosing H to maximize the trace of the r.h.s. of (5)
gives the conventional form,

E{[AR)-AJAR)-AITIA} 2[ | B-AlgT(B)dB]
Bep

-1
L [xa®.Cg®glC)BaC]
Be BCep

[ [e®)B-A]TdB], ©)
Bep
where g(B) is chosen to maximize the trace of the r.h.s.
of (9). The new form of the Barankin bound (5) is
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simpler than the conventional form: a quadratic
functional rather than a ratio of quadratic functionals, and
the trace of (5) is separable with respect to the M
components of f(B), while the trace of (9) is not separable
with respect to the M components of g(B). The
formulation of the Barankin bound as a simple
maximization of a convex quadratic functional opens the
problem of computing the bound to attack by modern
numerical tools from functional optimization and integral
equations, however such techniques have not yet been
applied.

In some treatments, the Barankin bound has a still
more complicated form than (9). In particular, setting
B=A in (8), and using the fact that k4 (A,C)=1, we find

that IfA(B)dB=0. Therefore if we enforce the
Bep

equivalent constraint, | g(B)dB=0, we can remove the
Bep

terms from (9) that contain products of A and g(B).

However there appears to be no advantage in doing so.

4. EXAMPLES OF BARANKIN BOUND

We present three examples of the Barankin bound in
this section, where efficient estimates do not exist, and
where the integral equation (8) can be solved analytically.
The test for the existence of an efficient estimate is to
determine (by inspection) whether the A-dependence

vanishes in the expression, [A + J:,:V Alnpa(RIA)],
where ] is the Fisher information matrix [4].

Example 1 Estimating the probability that a Poisson
random variable is equal to zero We observe N
independent realizations of a discrete, Poisson random
variable, {r;, 1<n<N}, and the object is to estimate the

probability that the random variable, r, is equal to zero:
a=exp(-E{r}). Although there is an efficient estimate for
the mean of r, recall that efficiency does not commute
with nonlinear transformations. The discrete probability
for the observations is

N R
PriaRIA) = nl[(-m A) “AR,!]. (10)
n=
The kemnel (3) is
N . .

kp®.0) = (BS) exp(-HABHC) )
and for f=(0,1), the solution to the integral equation (8) is

fo(B) = A[3(B-AN-DN) - §B-A)], (12)

where 8(:) is the Dirac delta function. Substituting this
solution into (5) gives the Barankin bound,

E{[AR)-A]2 | A} 2 A2.(A"IN_ 1), (13)
Substituting (12) into (6), and simplifying gives the
locally minimum variance unbiased estimate,
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N
(ZR,)

AR = [N-DN] o=t (14)
since the A-dependence vanishes, this estimate is
uniformly minimum variance. The estimator formula has
previously been derived by means of Blackwell's
technique, where one starts with a suboptimal unbiased
estimate (e.g., the number of values of r that are equal to
zero, divided by N) and then takes the expectation of the
suboptimal estimate conditioned on a sufficient statistic
[5]. ¢

Example 2 Estimating the offset of an exponential
random variable We observe N independent realizations of
an exponentially distributed random variable, {r,,

1<n<N}, that is offset from the origin, and the object is
to estimate the offset. The probability density function
for the observations is

N
Pria(RIA) = Hllrl-e' RNy Ry-AL  (5)
n=

where u_;(*) is the unit-step function. The kernel (3) is
kA (B,C) = exp{N:[min(B,C) - Al/y}, B=A, C2A. (16)
For f=[A,=), the solution to the integral equation (8) is
fA(B) = exp[- N(B-A)/] - v-0(B-A)/N, B2A. (17)
Substituting this solution into (5) gives the Barankin
bound,
E{[AR)-AI21 A} 2 (Y/N)2. (18)
The A-dependence cancels in the estimator formula (6)
giving the uniformly minimum variance unbiased
estimate,
&R) = inf(R) - YN, a9
where inf(R) denotes the greatest lower bound on the N
observations. This estimate was previously shown to
satisfy the Barankin bound with equality [6]. ¢

Example 3 PET inversion; natural gamma ray
spectrometry We observe N independent Poisson random
variables, {r,, 1<n<N}, and the object is to estimate a

vector of M parameters, where the means of the
observations are equal to linear combinations of the
parameters,

M
E(R,1A}= ¥ QuuAm (0)
m=1

and where the NxM matrix, Q, is known. We assume
that N>M and that Q is full-rank. For the PET (positron
emission tomography) inversion problem [7], we wish to
estimate a continuous density from a finite set of
measurements, where the density is represented in terms
of M basis functions. Natural gamma ray spectrometry
[81,[9] is used in petroleum well logging; here the object
is to estimate the concentrations of potassium, uranium,
and thorium, from five measurements of gamma ray
counts, each measurement having a different energy

spectral response.
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The log-likelihood of the observations is

N M
In p,(RIA) = 3 [Rn‘ln( 2 QnmAm)
n=1 m=1

M
. lenmAm -mRr!]. @
m=
The gradient of the log-likelihood is

Valnp,RIA) = QTD, RQA),  (22)

where DQA is an NxN diagonal matrix,
DAl = m%_IQ,,mAm. (23)

The MxM Fisher information matrix is
Ja=Q™Dg,Q. 4

To test whether or not there is an efficient estimate, we
inspect the following expression for A-dependence,

A + T, VAInp,(RIA) = (QTDpAQ) Q™D R. (25)

The A-dependence vanishes for two special cases: 1)
M=1, and 2) N=M. For N>M>1, the expression depends
on A, and 1) an efficient estimate does not exist; 2) there
is no closed-form solution for the ML estimate (however
the likelihood function is convex, and the maximum can
be found reliably with the EM (expectation-maximization)
algorithm [7]); 3) there are no closed-form expressions for
the bias and the covariance of the ML estimate.

The kemel (3) is

N [QB ]n' [QC ]n
kA (B,C) = exp { n§1 [QAl

- [QB], - [QC], + [QA],,) } . 6

M
With the notation, 8(B-A) = [] 8(B,-Ap). the solution
m=1
to the integral equation (8) is
fo(B) = - (QTDg, Q)" 1V3(B-A). @n

Substituting this solution into (5) gives the Barankin
bound

E(8R)-ANIAR)-AITIA} 2QTD, Q). 29

which is equal to the CR bound! Substituting the
solution (27) into (6) gives the locally minimum variance
unbiased estimate,

4®) = (QTD,Q)"1QTDY,R. @9)

In short, there is no efficient estimate, but there is a
locally minimum variance unbiased estimate - that is not
ML - whose variance is (locally) equal to the CR bound.
In fact, natural gamma ray spectrometry, as used in
well-logging, employs the locally minimum variance
unbiased estimate [9]. Historically, this estimate was
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developed as follows: ignoring the Poisson distribution
of the data, if one simply chooses A to minimize
(R-QA)TW(R-QA), where W is a symmetric, positive-
definite weight matrix, the resulting estimate,

a(R) = QTWQIIQTWR, (30)
is unbiased. The error covariance depends on both the
weight matrix and the unknown value of the parameters.
Optimizing the weight matrix for nominal values of the
parameters gives the locally minimum variance unbiased
estimate, (29). Solutions to weighted least-squares
problems are usually robust with respect to the weights,
and in the case of natural gamma ray spectrometry where
there is prior information about the parameters, the
locally minimum variance estimate performs nearly
optimally. ¢

4. CONCLUSIONS

The Barankin bound turns out to be rather simple to
derive. The new formulation of the Barankin bound as the
maximization of a convex quadratic functional opens the
problem of computing the bound to attack by modern
numerical tools from functional optimization and the
solution of integral equations, however such techniques
have not yet been applied. The question as to the utility
of the locally minimum variance unbiased estimate -
compared with that of the maximum likelihood estimate -

is problem-dependent.
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