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ABSTRACT

In this paper we describe a sound classification method,
which seems to be applicable to a broad domain of station-
ary, non-musical sounds, such as machine noises and other
man made non periodic sounds. The method is based on
matching higher order spectra (HOS) of the acoustic sig-
nals and it generalizes our earlier results on classification
of sustained musical sounds by higher order moments. An
efficient “decorrelated matched filter” implemetation is pre-
sented. The results show good sound classification statistics
and a comparison to spectral matching methods is also dis-
cussed.

1. INTRODUCTION

Sound textures can be considered as stationary acoustical
phenomena that obtain their acoustical effect from internal
variations in the sound structure, such as micro-fluctuations
in the harmonics of a pitched sound or statistical proper-
ties of a random excitation source in an acoustic system.
Signal acoustic models usually describe the structure of
slowly varying partials such as the overall structure induced
by spectral envelope of resonant chambers in musical in-
struments or the formant filters in speech. Besides these
long-time (~ 50ms)) characteristics there are short-time (~
10ms) fluctuations in frequency that contribute significantly
to the timbre of a pitched (voiced) sound by effecting the
sound harmonicity and coherence. In noise-like sound such
as engine noise and other man made un-harmonic signals,
the characterizing spectrum is continuous and a significant
component of the sounds structure is due to features of the
probability distribution function of the prewhitened signal.

The first step beyond analyzing the spectral amplitude
distribution is to look at the statistical properties of the
excitation signal. The effect of the spectral envelope can
be removed by inverse filtering of the signal, thus obtaining
a spectrally flat (white) residual signal. The higher order
statistical (HOS) properties of this residual are closely re-
lated to the non-linearities of the excitation source [4][1].
We argued that for musical signals this effect can be mod-
eled as a frequency modulating jitter of the harmonics {2].
In this work we would like to consider a unifying scheme
were the bispectral and trispectral signatures of the sounds
serve as features for analysis and classification of pitched
{musical) signals and noise-like (machine) sounds with con-
tinuous spectrum.
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2. MOMENTS SPACE REPRESENTATION

In an earlier work we have analyzed a set of sounds of mu-
sical instruments, by looking at the higher order moments
of decorrelated signals. The moments of order % in the time
domain are related to the integral of the k-th order spectra
in the frequency domain. For instance, for k = 3

T
m3=Tli_1'n°°/O xs(t)dtz//B,(w;,wz)dwldwg (1)

Using a source-filter model, the decorrelated signal of a
stable periodic sound can be regarded as a stochastic version
of a pulse train, with variations occurring due to some ran-
dom frequency jitter applied to its harmonics. By looking
at the skewness v3 = m3/a® of the signal and the kurtosis
v4 = my/o* we have shown that these statistics measure the
amount of harmonicity among triplets and larger groups of
partials apparent in the signal [2].

For musical sounds the moments show a clear distinction
between string, woodwind and brass sounds. Represent-
ing the sounds as coordinates in 'moments space’ locates
the instrumental groups on ’orbits’ with various distances
around the origin, very much according to the traditional,
orchestration handbook practice.

Figure 1. Location of sounds in the 3rd and 4th nor-
malized moments plane. The value 3 is subtracted
from the kurtosis so that the origin would corre-
spond to a perfect Gaussian signal. Brass sounds
are on the perimeter. Strings are in the center.

In this work we try to extend the above results to deal
with non periodic sounds, specifically dealing with sounds
derived from machine and other man made noises. For
the noise-like signals, we have investigated 11 recordings
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of sounds such as people talking in a room, engine noises of
various kinds, recordings of factory sounds and etc. Since
skewness is zero for symmetric signals', we ignored the 3rd
order moment. In figure 2 we show the kurtosis values of
the 11 different sound types, estimated using 2 sec. long

segments The moments space representation locates pulse"
‘jagged” or “rough” sounds, such as talking voices ™

like, ¢
(babble) machinery crashes (facl, fac2 - factory nmses)
and noisy engines (m109, dops - destroyer operations room
recording) to be higher in the moments space, while the *

“smoothly” running engines being near the origin (kurtosis
= 3), and thus closer to a Gaussian model. As one can see,
the variance of the estimate is significant and does not allow
for detailed discrimination between sounds.

Average Kurtosis values (2 sec. window)
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Figure 2. Kurtosis mean values and standard devi-
ation for the various samples. Sounds with many
transitory elements have higher kurtosis values.
Smooth sounds are closer to 3.

A COMPLETE HOS FEATURE SPACE
REPRESENTATION

3.

The 'moments space’ representation, although computa-
tionally attractive, actually detects only the average value
of the signals polyspectral planes. In order to get more in-
formation out of the polyspectral contents of a signal, we
would like to consider further features based on HOS.

As will be explained in the following, we are interested
in the HOS of decorrelated signals. The differences in bis-
pectral contents of decorrelated signals can be visually ob-
served in figure (3). These figures visually demonstrate the
bispectral signatures for the following sounds: recordings
of a people talking {babble), “crashing” factory noise (fac2)
and a rather “smooth” buccaneer engine noise (bucl).

One can see that the bispectral amplitudes of the signals
differ significantly.

The matching in polyspectral domain is performed by

li.e. signals whose amplitude distribution is symmetric with

respect to the mean.
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Figure 3. Bispectral amplitudes for people talking,
car production factory noise, buccaneer engine and
m109 tank sounds (left to right).

using 2 Maximum Likelihood (ML) classifier [3)

d(y, z) = —/

which is an expression for likelihood of seeing signal y under
the hypothesis z (i.e. a system which has power-spectra S:
and bispectra B;).

The mathematical assumptions behind this classifier are:
1) Gaussianity of the bispectral estimator, which is observed
under some mild mixing conditions of the random process;
2) for discrete signals, when assuming an ARMA model, a
dense enough sampling of the frequency domain ensures a
unique classification.

|Bz(w1,w2) — By(wi,w2)f?

duw d
S2(01)5x (w2) Sz (wn + wa) 4

(2)

3.1.

Our implementation of the polyspectral matching is based
on the equivalence between bispectrum of decorrelated sig-
nal and a “spectrally normalized” version of bispectrum,
called usually bicoherence function

Implementation Notes

B (wlyw2)
\[S,(wl)sx(wz)sz(wl + we)

blws,ws) = 3)

We summarize this in the following Lemma,

Lemma: For non-Gaussian, linear process z(t), the bi-
coherence function b;(w;,w2) is equal to the bispectrum
Bz (w1, w2) of a decorrelated signal £s,. The decorrelation
is done by inverse filtering of z(t) through a filter that has
power-spectrum equal to the spectrum S;(w) of the original
signal z.

Proof:

Assuming the signal z(t) is described by a non-Gaussian,

3846



independent and identically distributed (i.i.d.) excitation
signal u(t) passing through a linear filter h(t).

z(t) = / h(t)u(t —t")dt' 4)
the spectra and bispectra of z(t) are given by
Sz(w) = pelH(w)? (5)
Bz(wi,w2) = psH(w1)H(w2)H" (w1 + w2)

(with a similar equation for the trispectra), with u2, us
(and p4) being the second, third (and fourth) order cumu-
lants of U;. For convenience we shall assume u; = 1. Taking
a spectrally matching filter H(w)

Sz(w) = |H(w)® (6)

the inverse filtering of z(t) with A~'(w) gives a residual
Z(t). The bispectrum of £(t) is

Bz (wl 1 wz)
I?(wl)H(wg)H‘(wl + w:)

Bz (w1,w2) =

()

Using the spectral matching property of A , we arrive at
the equivalence of the right-hand side of the above equation
and the definition of the bicoherence function of the original

signal z(t).
[m]

3.1.1.

One of the biggest problems with using polyspectral fea-
tures for signal matching is the long signal duration needed
for averaging the estimates in order to overcome their vari-
ance. This might be extremely demanding in terms of
the memory and computation power requirements. In our
implementation, we have used a “matched filter” variant,
which is described below, to do the classifier calculation.

Let us look at a signal z(t) which is the result of a con-
volution between two signals z(t) and y(—t).

z(t) = z(t) @ y(-t) (8)

In case where z(t) and y(t) are statistically independent,
the bispectrum of z(t) is

B (w1, w2) = Bg(w1,w2) - By(w1,w?) 9)

“Matched filter” implementation

On the other hand, if y(t) = z(t), one can show that
B.(wy,w2) > | Bz (w1, w2)|? (10)

Moreover, it is important to recall that k-th order order
moments are equal to the integral over the k-spectra. Using
these two properties and Lemma, we implemented a variant
of equation (2)

dws) = [ [1Bsoron) - Bilorw? )

Jewesnra-2 [Gweu-nix

IN

+ / (#(t) ® §(—6))dt
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Note that y(t) is decorrelated by a filter that matches S,.

As we have already mentioned, the skewness is zero
for symmetric signals. An analogous derivation holds for
trispectra, and in our simulations we have used powers of
four in the moments calculation.

4. RESULTS

The data that we have used in our simulations comes
from a Signal Processing Information Base (SPIB), at
http://spib.rice.edu/spib/select_noise.html.

For simulations we have used 11 different recordings
(sound files), with 1 template and 25 test segments taken
from each file. The first 200 milliseconds of each file were
used as a training segment (template). The test segments
(200 msec. each) where drawn, at 1 second time lags, from
the same recordings, starting from time of two seconds.
Thus, we had in total 11 classes of sounds represented by
11 templates and a test set of 25 examples of each class.

The classification results for 25 test samples of each class
are summarized in the table 1.

5. DISCUSSION

A natural feature for matching sound signal is the spec-
trum. In order to evaluate the spectral similarity among
the signals, we have looked at the coherence function

_ _ Py
)= P Pu@) (12)
where P.;(w), Pyy(w) are the Power Spectral Densities of
z(t) and y(t) respectively, and P,y(w) is the Cross Spectral
Density of z and y. In figure(4) we show the integral over
all frequencies, of the coherence function calculated between
various test set samples and a ’babb’ template. The coher-
ence function was taken with fit of order 512, which gives
spectral resolution of approximately 40 Hz.
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Figure 4. Integral of spectral coherence function
between five samples of four test classes (total 24
test samples) and a ’babb’ template. Note that the
result for test classes ’babb’ is not better then for
the other classes.
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babb bucl buc2 deng dops f.16 facl fac2 hfch leop ml09
babb 20 0 0 0 0 0 0 0 0 5 0
bucl 0 25 0 0 0 0 0 0 0 0 0
buc2 0 0 25 0 0 0 0 0 0 0 0
deng 1 0 0 19 0 0 0 0 5 0 0
dops 0 0 0 0 24 0 1 0 0 0 0
f_16 0 0 0 0 0 25 0 0 0 0 0
facl 0 1 0 0 0 3 17 0 0 4 0
fac2 1 0 0 0 0 0 0 22 0 2 0
hfch 0 0 0 0 0 0 0 0 25 0 0
leop 0 0 0 0 0 0 0 0 0 25 0
ml109 0 0 0 0 0 0 0 0 0 0 25

Table 1. Classification results for order 4 (trispectral) matching. The set contains 11 classes of signals of 25

test segments each.

The results show a very poor coherence of a 'babb’ tem-
plate to the various test signals (order of 10*). Moreover,
no preference exists for matching the test samples of the
'babb’ class compared to other test signals.

Testing a matched filter classifier on the same set of
signals? we find unsatisfactory results for most of the sig-
nals ( < 44% classification rate for seven signals, 64% for
'm109’ and 100% for ’buc?’, dops’ and ’hfch’).

The correct classification probability depends on the
credibility of the features. Naturally, longer segments give
less variance of the estimators and improve the classifica-
tion results. We summarize the dependence of the classifi-
cation probability on segment length in figure 5. Due to the
large fluctuations in the classification results for short seg-
ment sizes, we plot an order two regression graph for times
shorter then 0.2 seconds.

Classification rate as a function of sagment size
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Figure 5. The correct classification probabilities as
afunction of segment length, tested for four signals.
See text for more details.

2This classification is done by choosing a template which max-
imizes the square sum (energy) of the convolution signal be-
tween the original (not decorrelated) template and an original
test segment.
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6. SUMMARY AND CONCLUSION

In this work we have presented a method for sound classifi-
cation which is based on matching HOS of acoustic signals.
The method was applied to sounds from diverse sources,
such as machine noises and other non periodic, stationary,
man made sounds. This type of acoustical phenomena seem
to acquire their acoustical effect to a large extend due to
the micro-fluctuations of their spectral components. These
fluctuations seem to be successfully detected by polyspec-
tral analysis methods.

We have also presented an efficient implementation of the
polyspectral matching by means of a matched filter between
decorrelated signals. The results show that polyspectral
features are superior in their discriminatory properties to
the power spectral features. This matching requires the
knowledge of 1) spectral envelope filter coefficients and of
2) vector of decorrelated signals samples, which is used as
a template for the decorrelated matching.

Acknowledgments

The authors are most grateful to Xavier Rodet for the
many important remarks and fruitful discussions of this
work.

REFERENCES

{1] S.Dubnov, N.Tishby Testing for Non linearity and
Gaussianity in sustained portion of musical signals,
Proceedings of the Journees d’Informatique Musicale,
Caen, 1996.

[2] S.Dubnov, N.Tishby, D.Cohen, Influence of frequency
modulating jitter on the higher order moments of musi-
cal signals, Proceeding of the International Computer
Music Conference, Hong-Kong 1996.

[3] G.B.Giannakis and M.K.Tsatsanis, A
Unifying Mazimum-Likelihood View of Cumulant and
Polyspectral Measures for Non-Gaussian Signal Classi-
fication and Estimation, IEEE Transactions on Infor-
mation Theory, Vol.38, No.2, march 1992.

[4] M.J. Hinich, Testing for Gaussainity and Linearity of
a Stationary Time Series, Journal of Time Series Anal-
ysis, Vol. 3, No.3, 1982.

3848



