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ABSTRACT

In this paper a new parameter estimation technique based on
channel impulse response estimation is introduced which is
desirable in randomly time-varying systems such as burst
transmission mobile systems since it is robust in environments
with considerable delay spread, thus ideal for wireless
channels, and has a fast convrgence, thus desirable in burst
transmission systems. The shortcomings of some of the
existing algorithms are also discussed here.

1. Introduction

Parameter estimation in nonstationary systems with rapid
changes is an important issue in many real time signal
processing and communications systems. Real time restriction
necessitates an efficient and reliable estimator for proper
performance of the system. For example, estimation of
frequency mismatch between the received signal carrier and the
local oscillator frequencies in digital communications is
essential for reliable performance of the receiver. In particular,
in wireless systems a reliable link in the presence of non-
negligible delay spread is not possible unless some sort of
adaptive filtering is performed at the receiver. In such cases we
can simplify the equalizer by estimating the amount of
frequency offset and removing as much of it as possible before
adaptive equalization starts.

An efficient estimator must be unbiased and consistent to
provide accurate estimation of frequency offset. In addition, it
must converge rapidly and have recusive structure to facilitate
updating process as the system characteristics varies rapidly.
As an example, in a mobile system with bursty transmission,
random time variations due to the Doppler effect amounts to
considerable variation of signa!l to noise power ratio which can
be detrimental to the estimation accuracy. On the other hand,
the burstiness (noncontiguity) of the transmitted signal limits
the number of received symbols used for estimation. In
interactive systems where real time data is being transmitted,
such as voice, we have a limited amount of time to spend on
receiver processing and received bursts must be processed as
quickly as possible in order not to undermine the overall
performance.

Many classical estimation algorithms [1], consider additive
noise as the only major impairment. However, in wireless
systems the channel impulse response is a random field
h(t, t) which is stationary with respect to the first parameter
and white with respect to the second parameter so the
estimation problem implies a recursive deconvolution in the
presence of noise. Most of the optimum or near optimum
estimation techniques for additive noise channel do not
perform properly in time-varying random systems due to
sensitivity to the time or frequency selective fading, large delay
spreads, etc. due to sensitivity to these parameters.

The approach introduced in this paper is based on estimating
the instantanous impulse response of the system at two or more
instants not too far from each other using a training sequence.
The estimation points are selected relatively close so any
changes in the channel can be assumed negligible except for
changes in the desired parameter which in this case is any
rotation due to frequency offset. The estimation points can even
be chosen as close to each other as one sample time. As
discussed in more detail in the following sections, this scheme
can be implemented very simply, only depends on a few
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samples of a training sequence, thus arrives at an estimate
rather quickly, and takes into account the channel
characteristics by deconvolving the channel impulse response.
Also, as a by-product of this scheme we get an initial impulse
response estimate of the channel which can be useful, for
instance for equalizer initial estimates, and can also give
estimates of delay spread during the burst, which in tum can be
very helpful in the final detection scheme. Another important
fact to mention is that in the scheme presented here we can
design the training signal to arrive at better estimates as will be
shown later, however, if the training signal is already fixed, as
in the case of systems designed according to standards, we still
arrive at superior estimates.

In the following section we model the system and give the
optimum unbiased channel impulse response estimator in the
discrete, i.e., sampled time case. Based on the system model
and results we will give optimum signal design guidelines and
bounds on the performance.

2. The Model and Analysis

We model the system by taking complex T/m samples, where
T is the symbol period, so we have m complex samples per
transmitted symbol. Let the channel be sufficiently represented
by l such samples, 50 the vector

H = (h(0), A(1), ..., h(I - 1))‘ , represents the complex
channel impulse response. The known transmitted symbols
(i.e., the samples corresponding to the sync-word) at sample
times can be similarly represented by

X = (0), (1), ..., XN = 1)), where we assume that the
sequence of x(i), for 0<i< N, is a known pattern, and the
transmitted samples x(i), for i<0, or i =N, are unknown
data samples. At the receiver we have the transmitted samples
convolved with the channel impulse response plus additive
noise. In order to estimate the channel impulse response we
have to excite it with known samples, and since the channel
impulse response is [ samples long we will concentrate our
observation at the receiver to the received samples
corresponding to x(I-1) to x(N-1) of the known
transmitted pattern. To arrive at our estimate we can take as
many received contiguous samples beyond the one
corresponding to x(/ - 1) but not beyond the received sample
corresponding to x(N - 1) since transmitted samples beyond
that point are random and not known to us, resulting in different
accuracies. Without loss of generality let us take M,
1 S M <N -, received samples corresponding to x(k) where
l-1<kSN-M-1, namely r(k),to x(k+ M~ 1), namely
rk+M=1).

At the receiver the received

Rat = (00, e+ 1), oo ik + M= D) is

vector

-

Rl = WXELH+W (1)

where W = (w(0), w(1), ..., w(M = 1)), is the vector of M
independent samples of an additive Gaussian noise with

covariance matrix "' = G'G , where G is also known as the
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whitening filter, also

x(k) x(k-1)
x(k+1) x(k)

ox(k=1+1)
x(k=1+2)

x(tk+M-1) x(k+M=-2) ..x(k+M-1)

in which all elements are known and complex, and

exp (j((2rkAST)/m)) k=1
(ol = { 0 else

which accounts for the unknown frequency offset Af
introduced at the receiver. Note again that we are assuming that
the channel does not change during the transmission of the
N - [ known samples, so that I-;V does not change, however, is
unknown, and the only change in channel characteristics is due
to ¥, namely from the frequency offset. Now let us take
another set of M contiguous samples at the receiver
corresponding to transmitted known samples x(k+i) to
x(k+i+M-1), where k+i+M<N, resulting in the

received vector
RY' = (rk+ D, Mk #i+ D), ooy r(k+i+M=1)), which

similar to (1) is

2k+i

RiF = wxtrHW ()

where, X%*! is the same as X}, except that each element is
chosen with an offset of i with respect to the elements of X 1’5, .

2miAf
Also ¥, = exp(j m

¥, , simply because the sample

. 3kl - .
elementsin Xp  suffer i times more angular offset rotation by

-
the time they get to the receiver compared to the ones in Xz’ff.

Now, note that in (1) both &, and ¥, are unknown and must
be estimated. This cannot be easily done unless W, can be
approximated by an M X M identity matrix, in other words, we
assume that the rotation of samples due to frequency offset at
the receiver is negligible over M contiguous samples, which is
a reasonable assumption to make in practice, as simulation
results also show, specially when M is very small. Because of
this reason we will choose M to be relatively small in practice
and in the case of M = 1, this point is moot. Under this
assumption, (1) reduces to

Rb = XtH+W  (3)
and (2) reduces to
L o 2mALT
R = XEriHSTT 4 W ()
From (3) (also refer to [3]), we can get an estimate of H with
offset k, namely Hx by
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Hi = (XKD IXETURE ()

where . denotes the Hermitian transpose of a matrix, Note
that in (5) the terms in the bracket are known a priori and can
be calculated off line and stored in the receiver. It can be
implemented as cascades of two FIR filters operating on the
received samples. Substituting (3) in (5) we get

He = H+ [(XETXE ) IXEC W (6)

Taking the expected value of both sides of (6) we see that

E{Hr} = H , which shows that (5) is an unbiased estimate.
Also note from (6) that the AWGN has been colored by this
linear process and we can suffer from noise enhancement. The
amount of noise enhancement clearly depends on the term in
the bracket on the right hand side of (6), and can be detrimental

in cases where X {g;r-lx ,’f, is singular [4]. However, since
all the elements in the bracket are known a priori we can choose
the offsets k and k + / in such a way that they will resuit in the

least amount of noise enhancements among all offset choices
possible.

From (6) we see that A is a Gaussian random process, since it
is a linear combination of a fixed sample of a random process
-

H, and a linear operation on a zero mean Guassian random

- -
process W. So, H is a Guassian random process with mean H
and covariance matrix

E{(H-H)") - E{([(xx;r-lxm-‘xg}r-lﬁ)

([(x{:}r-nx,’z,)“Xk}F-‘ﬁ)*} = No(XHT-1Xg)™!

The signal to noise ratio at the output of the estimator, SNR, , is

I
SNR, = 7
¢ NJEETIXET] 7
where [.| denotes the /, norm of a vector in the numerator

and of a matrix in the denominator.
In section 3 we show that, except in some peculiar
circumstances, often the higher M is the higher SNR, will be.

But recall from previous arguments that the higher M is the less
realistic our approximation of W to an M x M identity matrix

will be. So, there is an optimum M for a given circumstance.

Similar to the estimate in (5) derived from (3), we can get an

2miAfT
o

estimate of He' ™  , or equivalently Hi+i , from (4) to be

2miAfT
Hk+i-erl m (8)
_[(Xﬂ:ﬂ)Tr-lxllv i)—lxﬁc +)Tp-1 ]ﬁﬁ“

This is the exact same set up as in (5) and can be realized
similarly.
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Now (5) and (8) give two estimates of the channel impulse
response i samples away from each other, thus besides the
effect of noise, the two estimates differ only in phase which
directly corresponds to the amount of frequency offset, as is
obvious from (5) and (8). So, it can be easily seen from (5) and
(8) that each element of the channel vector is going to give an
estimate of the frequency offset. These estimates, there are [ of
them, can be weighted by the magnitude of their corresponding
element and then averaged to give a final estimate. The
estimate of the frequency offset then, is

-1

3 rl®* 20k o 1) - i)

m j=0

Af = T =T %
2
Y Il
j=0

in which Z. denotes the angle or phase of the operand, and
Ak(j) is the 1"' element of the vector Hg.

Note that if we have the choice of the transmitted symbols we
can choose a sync-word smart enough to give us less noise
enhancement so the penalty we pay due to noise enhancement
is minimized. However, in cases where we have no such
control, such as cases in which sync-words are dictated by
standards, our task mainly gets concentrated on which offsets &
and k+i to choose and what M should be. The choice of / is
usually dictated to us by the resolution of the estimate we like
and the characteristics of the channel we transmit over.

3. Noise Enhancement and Optimum Signal Design

Two important issues should be addressed here. First, the
penalty of deviating from matched filter structure and second is
the optimum signal design for estimation. The penaity for extra
linear processing after matched filtering is noise enhacement.
The signal to noise ratio at the input of the matched filter, in

(S): _ IxA|

AWGN case, is 10
¥, {19

As mentioned earlier the first filter is matched to the
transmitted signal not the received one. Note that for simplicity
we have dropped the subscripts and superscripts from the
variables. This, hopefully, will not cause any confusions in
following the concepts in this section. The signal to noise ratio

at the output of the matched filter s
(S) Ix*xH| (an
N)u = Str(x*X)
where tr denotes the trace of the matrix. It can be shown that
N+l-1 1
2 2

Xy = >, 3 frft - Xk

iml juml

where || || denotes the Frobenius norm of the matrix.

The elements of matrix X*X are:
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N-1

D xrrn+i=j) iz

nw0

[X*X]; -

(x*X1;* i<j
The signal to noise ratio at the output of the estimator is

(S ) &)

- -
N)o ™ GFrex) "
Notice that the denominators in the above two equations are in

fact Frobenius norms of the positive definite matrix X*X . On
the other hand, The trace of a matrix equals the sum of

(12)

eigenvalues and eig(X*X) = We can show

S
eig(X*X)

that the signal to noise ratio at the the output of the estimator is
less than S/N at the output of the filter matched to the

transmitted signal (;)0 < (;)M .

The second issue is optimum choice of the signal. By using
Cauchy-Schwarz inequality we can easily conclude that
2

var(’i-z\.-)z (Y*c_rf); (13)

and the lower bound will be acheived if the martrix (X*X)is

diagonal. On the other hand (X*X)is a toeplitz matrix whose
N-1-}i-j

elements are (X*X);; ~ z x(n)x(n+li-j)).
n=0

So in order to have an orthogonal matrix the sync-word should
be a pseudorandom noise and then the optimum estimate is

’}'1" rrx(i)
‘ rXX{ j

It should be mentioned that minimum variance estimate results
in the optimum estimate for any sync-word, i.e., meets Crame-
Rao lower bound. The above argument proves that the lower
bound will be minimized by using a proper estimator signal.

4. Simulation Results

In Figure 1 we show a situation in which we try to
estimate a fixed frequency offset introduced equal to
-1/72 of the symbol rate, or equivalently, every symbol
time. This is a roughly 1.4% of symbol rate frequency
offset which is considerable. Also a delay spread of one
symbol time with an image power equal to that of the
main signal has been introduced. This is a rather harsh
delay spread and most other algorithms either fall apart
or suffer severely under such circumstances. Note from
this figure that the performance is not considerably
different from the case with no delay spread present.

We like to point out that there are two ways we can use
the general estimation scheme aqresented in this paper.
One is for packet switched calls, such as in control
channels or point of sale applications, wherein one or
very few bursts are transmitted per call and there is a
relatively big gap between transmissions, also
consecutively received bursts do not necessarily come
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from the same source. The other is for circuit switched
calls, such as in regular voice or other continuous bit
stream calls, wherein once the call is established,
numerous bursts will be transmitted regularly over the
channel from the source to the receiver. In the former
case, we use the algorithm presented here once at a time
and get an initial coarse estimate (coarseness depends on
the ) of the frequency offset and remove it. The rest
of the frequency offset will be removed by, say, an
equalizer which could much more easily handle it once
the bulk of the frequency offset is removed. In the circuit
switched scenario, however, since we have very many
coming bursts from the same source, we can average the
results of this algorithm across several bursts to
overcome the variance inherent in the algorithm output
when the SNR is very low. We will show the estimate
outputs once they are averaged over several bursts.

In the case of packet switched calls, we have to rely on
single estimates. Even though on the average the
estimate is very close to the actual frequency offset
injected but in low SNR's there is a variance. So, the
estimate is correct only within a range of the actual
frequency offset. For example, for the case of Figure 1,
the single estimate is within 10 percent of the actual
frequency offset only 26 percent of the time at an SNR =
10 dB. However, at an = 30 dB, the estimate is
always within 10 percent of actual. Figure 2 shows the
fraction of time the estimate is within 10, 20 and 30
percent of the actual in the aforementioned scenario for
several SNR's.

Another important performance criterion to be addressed
is how much of a frequency offset can this algorithm
track? Simulation results for SNR = 40, 30, 20, and 10
dB show that the froposed scheme tracks the frequency
offset rather well for all SNR’s uf; to a difference
equivalent to over 4% of the symbol rate, a frequency
offset which corresponds to over 15 degrees of phase
offset per symbol time. This is very robust. Now the
question is how does this proposed algorithm compare
with the classic ones. This algorithm with M = 1 and
{ = 1 degenerates to a classic scheme. Figure 3 shows
the 100 burst averaged estimate result of this case
compared with the proposed algorithm herein in the case
with no delay spread for various values of SNR. Note
from this figure that our proposed algorithm arrives at
closer estimates for all values of SNR with smaller
variances. However, the <1proposed algorithm is robust in
the presence of severe delay spread and only a minor
penalty in performance is paid in that case, whereas
simulation shows that the classic scheme breaks down
under considerable delay spread situations and arrives at
nonsense results.

5. Maximum likelihood estimation:

Another parameter estimation method is directly based on
maximum likelihood estimation. For a system with a carrier
frequency offset, the frequency offset is one such parameter. In
addition, in a system with delay spread due to multipath
propagation, the channel impulse response may also be an
unknown parameter. We can show that the likelihood fuction to
be maximized is

A(Af) = R*UXH + H X*W*R = 2Re[H X*W*R]

Since analytic solution of gradient equations are difficuit we
suggest to implement in real time, we propose an alternative
method based upon the equations for & and the equation for
A((Af) . This involves the use of 2 bank of matched filters, and

does not suffer from the limitations of a simple maximum of a
matched filter bank. This scheme will be presented in future.

6. Conclusions
In this document we have proposed a new algorithm for
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frequency offset estimation for burst transmissions over
wireless channels. The proposed algorithm is very robust
against severe delay spread as opposed to the existing schemes,
The proposed algorithm depends on the transmission of a
known symbol pattern and is very simple to implement,
especially more so when the known pattern meets certain
requirements described above. These requirements are easily
met in practical applications, e.g., in IS-136 standard, etc.
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