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ABSTRACT

A new identification algorithm based on over-sampling

scheme is proposed for a Hammerstein model which
consists of a nonlinear element followed by a linear dy-
namic model. The unknown linear transfer function
model can be identified by making use of the informa-
tion obtained from an over-sampled output, and the
intermediate input to the linear part can also be esti-
mated as well as an arbitrary continuous or discontinu-
ous function type of nonlinear element by a deconvolu-
tion approach. The prior information of the nonlinear
element is not needed in the new algorithm.

1. INTRODUCTION

Generally nonlinear systems can only be characterized
by a nonlinear model adequately, so nonlinear system
identification becomes important in theory and prac-
tice. Since the Hammerstein model, which consists of
a nonlinear memoryless element followed by a linear dy-
namic system, is particularly simple but can describe
a class of nonlinear system efficiently, it has attracted
much attention for a long time. However, in almost all
previous algorithms [1]-[3], the nonlinear element is lim-
ited to the systems with parametric nonlinearity, i.e.,
it can be characterized or approximated by a finite sum
of polynomials or other known basic functions, which
needs the prior information. Therefore the consistency
of the parameters estimate of the linear part may not
be ensured due to the affection of approximation errors
of nonlinearity. In [4], an algorithm without require-
ment of nonlinearity information was presented, but it
used a specific input test signal.

Estimation of the Hammerstein model can also be
considered as a blind identification problem, however,
the second-order cyclostationary statistics based ap-

proaches [5] have restricted availability to an FIR model.

High order cumulants can also be used for a blind iden-
tification problem, but it requires a large number of
data and its convergency is very slow.

The main purpose of this paper is to clarify how to es-
timate the parameters in the linear part when the prior
information about the nonlinearity can not be avail-
able. In this algorithm, we employ an over-sampling
scheme for observing the system output to estimate
the linear transfer function model, then estimate the
unknown input to the linear part to abtain a nonpara-
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metric model of the nonlinear element. One of the dis-
tinctive features is that the nonlinear function may be
an arbitrary nonlinear function which is not limited to
a polynomial series expansion. The estimation of the
linear part is not affected by the expression of the non-
linear part, and its consistency can be assured.

2. SYSTEM DESCRIPTION AND
OVER-SAMPLING SCHEME

We deal with a Hammerstein model, which is frequently
utilized to characterize a class of nonlinear system ef-
fectively. For the simplicity, we assume the system is an
SISO system, r(t), y(t) are input, output respectively,
u(t) is its intermidiate input to the linear part as well
as the output of nonlinearity. Further we assume that
the nonlinear element is described by u = f(r), which
is an unknown nonlinear function, and the linear part
is described by a transfer function with the order n.

r(t) is a discrete-time white random signal for the
identification whose duration time is T. Now the prob-
lem is how to identify the nonlinear function and the
linear dynamic model G(z) by using only the accessible
output signal y(z).

Now we introduce an over-sampling scheme for ob-
serving the output signal y(¢). The sampling interval A
is chosen such that A = T'/p , where p > n+ 1. In the
following discussion, we select p = n 4 1, then the lin-
ear dynamics can be expressed by a linear discrete-time
system with the sampling interval A as

y(k) + Y ay(k—i) =) bulk—d)+v(k) (1)
=1 =1

where u(k), y(k) and v(k) are the system input, output
and noise at instant kA respectively. It can be noticed
from the scheme of over-sampling that the correspond-
ing intermediate input has the form as

for kemp+1lm+1p (2

In the Hammerstein identification problem, u(k) is
not available, somtimes even r(k) can not be observed
directly, eg., in blind communication systems. Since
the nonlinear element f(-), the parameters {a;,b;} of
the linear dynamic model, and the input u(k) are all
unknown, therefore, it will be considered as a blind
identification problem. In this paper, we present a new
approach for a transfer function model in the presence

u(k) = upm
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of noise, and clarify how to attain the consistency of the
parameter estimates. Furthermore, by estimating the
unknown input, we can identify a nonlinear function
which is not necessarily a finite polynomial expansion.

For this kind of estimation problem, we have the fol-
lowing assumptions as

Al. The signal r(t) is a white random signal with dura-
tion T. As a consequence, the intermediate input
u(t) is also a white signal with duration T

A2. The discrete-time linear part can be described by
(1), where its order n is known as a priori.

A3. v(k) is a stationary white noise with zero mean,
finite variance and is independent to u{k).

3. IDENTIFICATION OF THE LINEAR
DYNAMICS VIA OVER-SAMPLING

Let the model parameters {a;}, {b;} in (1) be denoted
by the following vectors as
]T’ ob:[bl, bn]T

In the following, we describe how to estimate the model
parameters of 8, and 6,.

oa:[ala SR 7Y

3.1. Estimation of {a;}
Define the input and output regressor vectors as

;= (), ylp+7), y(Mp+ )17
u; = [u(), u(p+7), u(Mp+ )]
v; = [v(§), vp+7), o(Mp+ 7)1
®1=[vp, Yp-1, -+ WIf

D2=[Yp-1, ¥Yp-2, ** W ]T

¥y =[up, Up-1, - uz]T

Wy =[up1, Up—p, -+ w]’

whrer j = 1,---,p+ 1. From the feature described in

(2), we notice that ¥; = ¥,. Then the input-output
description is given by

Yp+1 —Yp = (Ql - Qz)ea +Vp1 — Yy (3)

Since @, is not correlated with v, or v,, then the
estimate of @, can be given by

6. = (BFAP) @] Ay @

where AP = &1 — b2, AY = Yp+1 — Yp. The variance
02 of the noise v(k) can be given by

= (Ay + A% - 8,)T(Ay + A2 -6,) [ (2M) (5)

Remark: If the variance 02 of the noise v(k) is known,
then the consistent estimate of 8, can also be given by

0, = (ADT . AS/M)"YASTAY/M +e,) (6)

where e; = [02, 0, ---, 0]T.
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3.2. Estimation of {b;}
Substituting @, into (1), then we have

ys(k) = byu(k — 1)+

where yy(k) = y(k) + [y(k — 1),
we define that

-+ bpu(k —n) +v(k) (7)

.-, y(k —n))@,. Now

vri=lus(), vr@p+3) s ys(Mp+3)] "
min(j,n) n
bia= D b biz= ) b
i=1 i=7+1
= [u(0), u(p), u(Mp)|”
uz = [0, u(0), u(M=1p) )T
whrer j =1,---,p+ 1, then we have
Y1i+1 = bjur + bjouz + v, (8)

It will lead to

bo1 (Y5541 — Vit1) = bit (Y f,p41 — Vpi1)
+bj2(ys1—v1) forj=1,--,p—-1 (9)
In order to determine the parameters uniquely, we as-

sume that by =1, i.e., by,; = 1. Then b, 1, bj2 can be
determined by

b=X\®TS/M — 621)" (8T y/M) (10)
where
Yiip+1 O e 0
&—| O 0
: 0 yriprn O
0 e 0 Yilp

yfslvp“’l = [yfxp+1’ yfll']

B = [bl,lv b1,2y b2,l) b2,2a T
gT

T
br-1,2,bn,1]

= {y}:2>"'ay}:p+1]

where X is chosen as b1 1 = 1. From the definition of
b 1 and bJ 2, we also have

b=Qo, (11)
where
Q= [ 1, 0, 1,, o, 1, ’
o, , 1., o, 1, o,
0 =00 2i=1[L,---, 1],

Thus we can obtain the estimate of 8; by

=(QTQ)"'QTb (12)
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4. ESTIMATION OF INTERMEDIATE
INPUT AND NONLINEARITY

Define matrix A and vectors b, c as

a3 1 0 0 by
A= | 0 . 0 b= by
S 001 :
—a, 0 --- 0 b
c=1[1, 0, ---, 0]

and give Ar(z~1), B;(z~!) and C(z7!) as follows
Ap(z™l) = det(I — APz7P)

= 14ariz P+ -+arnz P

Bj(z7') =271

(iAHM Xp: Ai-lbz-P)

i=1 i=j+1

c-adj(I — APz™P).

= Z—l(bj,o + e
AT(Z_I)
A(z~1)
Az D =14a1z7 4+ - +anz”
where ¢g = 1, | = (p — 1)n. Then the input-output

relationship can be rewritten by

B (z"1 1
where j = mod(k —-1,p)+ 1. Furthermore, let ¢ = z,
it can be represented by

Ap(gYy;(m) = Bj(g Ha(m)

p
+ ) Colg Nue(m)  (14)
s=1

+ bj,nz_np)

-1

C(z™Y) = =co+ciz 44z

n

7=, V(%) (13)

where
Ar(@Y)=1+ar1g7 '+ - +arng™
Bi(g ) =bjo+bj1qg7 + -+ bjng "

CS(‘I—I) =Cy-1+ Corp-19+ +++ Cstnp-1¢ "
yi(m) =y(mp+3j+1), a(m)=u(mp+ j)
vjs(m) =v(mp+ j+2—s)

Let ys;(m) = Ar(g~1)y;(m), then from (14), the
variance of intermediate input can be determined by

(p—1)n n
62 = (cov(yf,j(m))—&,% > c%) > b2, (15)
=0 1=0

Let a stable polynimal D;(g~!) and scalar o? satisfy
02D;(¢")D;(g) = 0oZB;(¢7")Bjla)

r
+ 02 Culg)Cilg) (16)

s=1
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where d;p = 1. Then a white random sequence £;(m)
can be given by

] Ar(q~ )
e.‘l( ) D. (q_l) y]( ) (17)
Now we introduce the polynomial equation
Bi(g™) = Di(g" ") H,(¢7 ")+~ NV G;(g7")(18a)
Hi(g™ ") =hjo+hjig '+ +hng”™  (18b)

where N > 0. The order of G;(¢g™!) is n — 1. Then
following the deconvolution approa.ch given in [6], the
intermediate input can be estimated by

N
fij(mm+ N) =62 " hjie;(m+1)/0? (19)
) 1=0
ii(m) = #;(mlm+ N)/ (20)
=1

Furthermore if the input signal (k) is available, then
the nonparametric expression of nonlinearity f(-) can

also be obtained through points of (r(m) ~ #(m)).

5. ANALYSIS OF THE ESTIMATION
The estimate error Af, can be given by

AO, =8, -0, = (BFAD/M) (BT Av/M) (21)
Since @3 is not correlated with v, or vy, then
lim IAv/M =0 (22)
M—o0
moreover, we can give following expression from (14)
Jim STAB /M = X (u) + 022 (v) (23)
—00
where
X(u) = NBAET®), Z()=H(c) I ()
bp-10 bn-11 brn-1n
() = bio b1 - bin
L 0 bpYO e bp7n—1
[ n,0 bn,l e bn,n
HOE Do
bao b21 0 bon
Lbio b1 1n d nx(nt1)
0 c - q 0
I(c)= |: . :
0 -+ 0 co - aluxuin
[ a(m)
Ar(g~1) a(m) s(m—n)
_ . u(m a{m-—n
A=E|l [Ar(q_l) ]
uim—-n
L Ar(q~
[-1 1 O
r= 0% 0 -1 0
. SO
L 0 e 0 -1 (I4+n)x (l+n)
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Figure 1. Estimated nonlinearity of case 1, solid
line: true; dotted line: estimate

A and I’ have full rank if #(m) and v(k) are white
random. If (A, b) is completely controllable and (A, er)
is observable, then $2(b), & (b) and IT (c) are full col-
umn rank, therefore ¥'(u) and ¥ (v) have full rank. If

02 # eig(~ 5 (0) B(w)) (24)
then ¥ (u)+02 X (v) has full rank, i.e., A}im oTAd /M
—00

exists and not singular, it means that A}im A8, =0.
—00

Review (8), when 8, is consistent estimate, and v ;
is not correlated with u1 or us, then A}im (b-b)=0
-0

in (10), and we have N}im (6, — 63) = 0 by (12).
—00

6. SIMULATION EXAMPLES

In the following numerical simulations, we deal with a
discontinuous nonlinearity:

0.5r +0.4\/7+0.55 06<r<18
u= 05r—0.2r24+ 253 —06<r<06
0.5r —04y/—7—-055 —18<r<—06

As for a linear dynamic system, we take a fourth-
order transfer function model. The test signal duration
T = 1. Further, we take the sampling interval A =
T/5 = 0.2, then the parameters of the unknown true
linear part with the sampling interval A is

6T = [-1.80 0.490 0.848 —0.504]
67 = [1.00 0.400 -0.710 0.300]

The variance o2 of white noise v(k) is 0.1. The
input signal is given in two cases. Case 1, r is cho-
sen as a uniformly distributed white signal on interval
(+1.75,1.75), and in case 2, r(k) is not available but
r € {£1.5,£0.5}. The estimated linear part is

T

D
R

= [-1.7998 0.4945 0.8409 —0.5011]

6, = [1.000 0.3981 -0.7058 0.3073]
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Figure 2. Estimated intermediate input % of
case 2, x-axis is 4(m), y-axis is u(m + 1)

and the estimated nonlilearity of case 1 is shown in
Figure 1. The estimated intermediate input @(m) of
case 2 is shown as Figure 2.

7. CONCLUSION

We have proposed a new identification algorithm for
the Hammerstein model based on the over-sampling
technique. If the test signal r(k) is available, by over-
sampling the output signal, we can identify an arbitrary
nonlinear function, unlike other ordinary methods as-
suming a parametric nonlinearity such as a finite poly-
nomial. Further, it is clarified that the estimates of
the transfer function model are consistent if the noise
is stationary zero-mean white noise independent of the
test input and its varaince satisfies condition in (24).
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