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ABSTRACT

We derive a technique for estimating a small number
of parameters of a spatially or temporally varying
transfer function for which a parametric model is
known. Such systems occur in transmission lines fith
faults or  mismatches, ultrasonic  imaging,
semiconductor layering and tomography in various
applications.

We assume that it is important not only to know that a
boundary exists but also to estimate the spatially
varying parameters of the medium across the
boundary.

The method does not require that the input need be
known, but it must be applied to the diverse paths
simultaneously, such as with a plane wave hitting a
plane surface. The output signals at the various points
are time synchronous unless delay is the varying
parameter. (In the case of temporal variation the same
input must be applied to diverse time windows with
corresponding delays.)

The transfer function model may be nonlinear in the
parameters, and we may also have to estimate the
nominal values around which the parameters are
locally varying. The procedure is constructed in the
context of estimating at any point in space the
parameters of the system by using the eigenstructure
of the covariance matrix of vectors whose elements are
Fourier transform values of the responses. We require
that the available responses in the spatial
neighborhood are independent enough to yield a good
estimate of the covariance matrix.

It is possible to enumerate and estimate the multiple
parameters when the sensitivity vectors (normalized
response gradients with respect to the parameters) are
not fully correlated. We are constrained to use only
frequencies for which output signal to noise ratio
(SNR) is reasonably large and for which variations
with the parameters are measurable. As an example
we examine the case of unknown parameter in a thin
layer between 2 semi-infinite layers.
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1. INTRODUCTION

There are many applications where spatial or temporal
variations of one or more parameters effecting the
transmission channel of a signal, in this case a finite
energy signal, are of interest. We consider any such
channel a transfer function, and the transfer function
need not be linear. Example cases are those of a
spectrally thin layer such as that in thin films in
semiconductors, thin acoustic paths for example in
biological tissues, and optical coatings. In all those
cases thinness is relative to the wavelengths used to
test the material. We show that normalized gradients
(sensitivities) of vectors of frequency samples from
Fourier transforms of output waveforms, as determined
from the models, are linearly related to spectrally
normalized vectors from the actual data when the
variations are small.

2. OUTPUT FOURIER TRANSFORM
VALUES

As shown in figure 1, let the input waveform have

Fourier transform values at frequencies S arrayed
in a column vector u and let the output waveform s
have Fourier transform whose respective values are
given in the elements of the vector s(at), where a is a
vector of unknown transfer function parameters and
possibly their products,
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The complex transfer function H(f) has
amplitude A(7) and phase ¢{)

H(f) = A(f)exp(ig(f)) @
At each frequency f, , H(f,) produces an amplitude
scaling and a phase shift on each of the elements of u,
resulting in s(at), the signal part of x= s(a)+w, where
w is a vector of independent, white, zero-mean
Gaussian noises.
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Figure 1. Possibly nonlinear transfer function H(f)
with associated parameters ., inputs, outputs and
additive noise w(f).

By expanding the noise-free portion of the reflection
data vectors x in a Taylor series around their values at
the nominal parameters &, we have

A
x-s8(a))=6,=—1 o,+w, (3)
a=a,
where the vector &, is the deviation from the nominal
ao, The multiple parameter gradient and transformation

matrix T is defined through
H 17
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and has elements
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where u, is the incident Fourier transform at f,, g, is

the sum of the powers of factors of &, the i element
in a, da; indicates & éag ..., and ¢ is the
associated coefficient of the ¢ jd‘ order derivative in the

Taylor expansion. Thus for example the vector
element a’a, has an associated column of

A
El_lamo whose elements are
3 FH(,,a,)
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2. SENSITIVITY VECTORS AND THE
SPECTRALLY NORMALIZED DATA
COVARIANCE MATRIX

We now define the sensitivity vectors g, to be the i
column of the sensitivity matrix

G= D;}% , 6)
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wherein the rows of — have been normalized

by the inverse of D, = diag(H(j;,ao)) . Thus the

nth element of § ; is

¢ P H(fa)
H(fn 4 ao) aaj

The vectors g are those that can be matched to the

signal subspace given by the covariance matrix of the
spectrally normalized data vectors.

g, Q)

Normalization of the vectors &, by the nominal

reflected signal transform value gives

= Js
-1 -1 -
. =D, 8‘__0'_—5 5,,+D'1W, (8)

= E ,+D ;‘w
where &, is the normalized deviation of the signal and
the data deviation covariance is

¢, ~sfiar}-ni( 2 o)

H
(g )D:”+D:‘N..D;” ©)
o=y

=D]R, D" +D'N, D"
where

D, =diag(u,H(f,, ),

QRS -

R, -2,
N, = Efww"}= 'L R, = E{5,5")

o

A
Noting that D' —

C =G =D/ I, then(8)can

a=ay
be rewritten

5, =G, +D]'w an
and
¢, =E{53,")
=GE{5,87}G" +DN.D¥, (12
=R, +D'N_D."
where R 5, = GE {5.1 sy }G " is the spectrally

whitened signal covariance matrix. A reasonably good
estimate of this can be found by averaging each
Fourier transform over all the reflections in a small
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region of the space where the layer typifies the
nominal reflection:

§=N‘12xn —>E{x}=s=D,u (13)

The average of the vectors does not necessarily yield a
vector that is the correct function of the nominal
parameters. However for small deviations it is a good
approximation, and approaches the true function if the
relationship between parameters and measurements is
truly linear.

We will call the eigenvectors associated with the non-
zero eigenvalues of R 5, the signal subspace
eigenvectors [1], even though they span the space of
the normalized deviations of the signal vectors rather
than the space of the signals themselves. The number
r of the independent vectors g, which span this
spectrally normalized signal space determines the
dimension of that subspace and the rank r of the
matrix
R, =E{5,57} (14)

Note that the noise covariance matrix has been colored
by the normalization in (9). Thus to estimate the
signal and noise terms in (8), it is appropriate first to
estimate the signal deviation covariance matrix R ; by
estimating and then removing the estimate of
Nu= g’I from the sample variations covariance
matrix of x, then to normalize R, by forming

R, =D'R,D;".

3. SOLUTION FOR NOMINAL
PARAMETERS AND ESTIMATION OF
THE PARAMETERS AT EACH
REFLECTION POINT

The estimation of the nominal parameters is
accomplished by solving for the vectors g (a,)
which span the spectrally normalized signal subspace.
One approach uses the MUSIC algorithm [2], and
another, correlation, simply looks for the maximum in
gf R 5,8+ where a signal subspace estimate of R 5,
may be used.

Once the nominal parameters are known, then both the

gradient matrix I = and the sensitivity

oa a=a,

matrix G = D;,'I" are known. We can obtain the
Wiener solution of &, from (11), where 8, = D 'w
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is the normalized noise. Using the orthogonality

theorem we find the deviation estimate
6(1 =R5. GHé;lax

H H 1 g (s

=R, G"(GR, G +D;N,D*)

X

The estimates of the parameters themselves is
a=a,+9, (16)

4. APPLICATION TO SYNTHETIC DATA

We have produced sensitivity vectors for a suite of
acoustic  thicknesses  0.001' through 0.150'
corresponding to the synthesized model in figure 2.
The other nominal parameters for the three media are
velocities 6000, 5000, and 6000 ft/sec for layers top to
bottom, densities are all unity and angle of test pulse
arrival is O degrees, orthogonal to the upper boundary.
The delay between the two reflections from the upper
and lower boundaries in the synthetic data varies
linearly from O through 50us. Thus at constant
velocity in the middle layer, thickness is varying
linearly from O through 0.125'. Having these
sensitivity functions, we correlate them with the
Fourier transform vectors' deviations' covariance
matrix, normalized by the mean reflection vector over
the range of traces 36 through 40, and obtain figure 3.
Both the MUSIC method and the signal subspace
correlation method are shown, and these give the same
result. The MUSIC method often requires some
knowledge of the general location of the "solution"
vector; thus the peak near 0.003' should be ignored.
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Figure 2. Wedge shaped acoustic object.

50 us=
0.125'
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Figure 3. MUSIC and noise covariance correlation
methods of search for nominal thickness, traces 36
through 40. (thickness in ft x 10)

Figure 4 shows the comparison of the chosen
sensitivity vector (for thickness equal to 0.094') with
the first eigenvector. There is an excellent magnitude
match and a good match of the shape of the phase
deviation around the most sensitive frequency region
near 27,000 Hz..

What we actually want is an estimate of the thickness
at each reflection point. Using the gradient vector for
the nominal 0.094', each of the trace's Fourier
transform vectors' deviations from nominal s
processed for deviation of thickness. The results are
shown in Figure 5. The real parts of the processing
results have been added to the nominal thickness; the
true thickness for the model and the imaginary part of
the computed deviation are also shown.

best match of first eigenvector (solid) and sensitivty vector (o) at thickness = g4#
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Figure 4. Magnitudes and unwrapped angles of best
matching energy-normalized sensitivity vector and first
eigenvector, for traces 36 through 40. (Frequency in
kilohertz.)
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Figure 5. Traces 36 through 40. Real first principal
component added to nominal thickness (solid);

imaginary part of first principal component ( 0).
5. CONCLUSIONS

The results of this approach are convincing. In these
simulations, we know exactly the velocity of all three
layers and have found the unknown thickness. It is
expected that if thickness were known, similarly good
results would be obtained if a variable velocity were to
be determined. The concept has also been extended to
multiple variables and nonlinearities. For low orders
the scheme should be practical. An outstanding
feature of the method is that the incident waveform
does not need to be known.

Applications to other parameterized objects is
straightforward, and visualization through pseudo 3D
imaging of parameter estimates is a typical extension
of the results.
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