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ABSTRACT

We consider the problem of global convergence of Godard
equalizers in the special case of binary (2-PAM) input sig-
nals, when the channel impulse response is complex. We
present a class of global minima of all Godard equalizers for
this case, which do not correspond to settings free of inter-
symbol-interference (ISI). The equalizer output correspond-
ing to these global minima appears as a four-point constel-
lation in the complex plane, however it is easily shown that
the decomposition in its real and imaginary part provides
two ISI-free versions of the transmitted signal. In the case
of multi-user constant modulus algorithms, the situation is
somewhat more complicated: the real and imaginary parts
of each equalizer output after convergence, may correspond
to different user signals. These results can be extended to
other types of real input signals.

1. INTRODUCTION

The issue of global convergence of the so-called Godard al-
gorithms for blind equalization has been given considerable
attention during the last years. When sampled at the sym-
bol rate, the output of a linear communication channel is
typically given in the baseband as

L—1
y(k) = Y hia(k = 1) + n(k) (1)

1=0

where {a(k)} is the transmitted symbol sequence, {h:} the
channel impulse response (assumed to be time-invariant)
and {n(k)} is the additive noise at the channel output,
all sampled at the symbol rate. L is the channel length,
measured in symbol periods. When {h(k)} is not a Dirac
impulse (up to a multiplicative factor), the signal y(k) is
corrupted by intersymbol interference (ISI).

In his original paper [1] Godard proposed the following
cost functions for blind equalization (in order to reduce the
ISI) of QAM signals: '

o 1
W) = S B(=®) =) p= 12 ()
where E denotes statistical expectation, and z(k) is the

sampled equalizer output at time instant k given by

M-—1

2k) =Y wilkyk—1) = YT()W(K) ~ (3)

1=0

where W(k) = [wi(k) -+ wm—1(k)]T and Y(k) =
[y(k) --- y(k — M +1)]7 are the equalizer setting and vec-
tor channel output at time instant k, respectively. rp is a
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constant scalar called dispersion constant and defined as:

Ela(k)[*"
"= Ela(k)F @

The minimization of the above cost function with respect
to the equalizer vector W yields the following class of sto-
chastic gradient algorithms, which are known as the Godard
algorithms:

Wk +1) = W(k)+uY " (k)z(k) |z (k)" "*(rp — |2(K)I”) (5)

where * denotes complex conjugate and 7 matrix transpose.
A choice for p in (5) equal to 1 or 2 corresponds to the
popular constant modulus (CM) algorithms CMA 1-2 and
CMA 2-2, respectively [2].

The convergence properties of the Godard algorithms
have been extensively investigated in the literature. Go-
dard showed in (Sl] that the global minima of the cost func-
tions correspond to ideal zero forcing (in the absence of
noise and for infinite equalizer lengths) equalizer settings
and predicted the existence of lacal stationary points that
correspond to undesired solutions. In order to obtain these
results, two assumptions on the input signal {a(k)} where
made, given in the following two equations:

E (a*(k)) = 0 (6)

E(la(k)l*) < 2 (E*(la(k)I*)) (7)

Eq. (6) imposes a symmetry property on the transmitted
constellation, whereas Eq. (7) assumes some compactness
of the constellation. In 3], Sato has analyzed the Sato al-
gorithm (which coincides with the CMA 1-2 in the case of
real signals) and found that for multi-level PAM signals the
algorithm will converge to an ideal setting if the channel eye
is mitially open. Benveniste et al [4] extended this result
by proving that even for an initially closed channel eye the
algorithm will converge to an ideal setting (assuming again
an infinite equalizer length and no additive noise), provided
that the input signal has a continuous sub-Gaussian distri-
bution. Shalvi and Weinstein [5] provided a strong result
for the CMA 2-2: its global convergence property for any
sub-Gaussian and symmetric input distribution, provided
again that the equalizer has infinite length and no additive
noise is present. The symmetry property assumed is the
same as (6), whereas sub-Gaussianity is guaranteed if the
following condition holds:

K(a) < 0 (8
where K (a) is the kurtosis of the input, defined as

K(a) = E (ja(k)|*) —2E7 (ja(k)*) - |E (a*(K)) [ (9)
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Notice that when (6) is satisfied, then (8) takes the form

Rla) = Z (JaR)) (10)
E? (la(k)?)
where K (a) is the so-called normalized kurtosis of a. Notice
that (10) is equivalent to (7).

Ding et al [6], [7], [8] brought up the issue of local minima
of Godard equalizers when the equalizer has finite length
and showed that the initialization of the algorithm plays an
important role in the convergence to local or global min-

“ima. More recently, Mayrargue [9%1, Li and Ding [10] and
Fijalkow et al [11) showed that in the case of SIMO (single-
input-multiple-output) channels (corresponding to fraction-
ally spaced equalization obtained by oversampling or to an-
tenna array reception) finite length Godard equalizers are
globally convergent to ideal equalizer settings in the noise-
less case if a certain zeros-and-length condition holds for the
multichannel. Again the results assume the two conditions
(6) and (8).

In this paper we consider a special case when the sym-
metry condition (6) is not met, and more specifically the
case of real PAM input signals when the receiver is complex

implying complex transmission channel, equalizer, and ad-
itive noise). The impact of these assumptions on the per-
formance of both single-user and multi-user CM-type algo-
rithms gives several interesting results that we present in
the sequel.

2. SINGLE-USER ALGORITHMS

We first assume that the transmitted input signal is a zero-
mean 2-PAM (BPSK) signal, which takes on the values +1
or —1 with equal probabilities:

Pr(a(k) = 1) = Pr(a(k) = —1) = % Vi (1)
Notice that this signal is sub-Gaussian K(a) = -2 <

0, however it is not symmetric in the complex plan:
E(@*(k))=1#0.
e also assume that the transmission channel is com-
plex. This will be the case when the receiver is complex
(i.e. processes the signals in both in-phase and quadrature)
_which corresponds to complex baseband processing, despite
““the fact that the transmitted signal is real (see e.g. [12] for
a similar scenario). .

We also assume that the equalizer W is a complex vec-
tor that is updated through any of the Godard algorithms
described by (5). We now consider an equalizer output of
the following form:

z(k) = €’® (cosp a(k — l1) + jsing a(k — ) (12)

where 3 = /-1, l;, Iy are arbitrary integers and 4, ¢ are
random phases (8,¢ € [0,27)). For the input signal de-
scribed by (11) the dispersion constant given by (4) is equal
to 1 for all values of p:

rp = 1, Vp (13)

The Godard cost function (2) in the case of an equalizer
output of the form in (12) will therefore equal:

JZ4W) =0, Vp (14)

According to (14) all the solutions of the form (12), corre-
sponding to a channel-equalizer cascade impulse response g
(g = h * w, where » denotes convolution) of the following
form

g=¢°-0--0cosp0---0jsing0---0 ) (15)
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are global minima (since J< °%(g) is a nonnegative cost func-
tion) of all the Godard cost functions JS°%(g). Note that
the existence of more than one non-zero terms in g indi-
cates the presence of intersymbol interference. This result
is outlined in the following theorem:

Theorem I: In the case of a 2-PAM input signal and a com-
plex channel-equalizer cascade g, the Godard cost functions
of all orders p admit the settings of the form (15) as global
minima.

The following points are worth to be discussed about the
implications of the above theorem.

Discussion

When I, # [, then the settings of the form (15) are not
ISI-free, for example the closed-eye measured defined as

> lgil — max;(|gi))
p = -
maxi (|gi])
will equal 1if ¢ = T (0 is the ISI-free value for p). When
1y = [z, the setting g takes the form

g = (--'Oe"’IO---) (17)

(16)

(¢o’ = ¢+#8) corresponding to the well-known optimal sta-

tionary points (¢ now represents a phase ambiguity which
is inherent in blind equalization and causes an arbitrary
rotation of the constellation).

Even though, strictly speaking, the stationary points of
the form (15) contain residual ISI after the equalizer conver-
gence, they are not truly undesirable. One may notice that

if the phase ambiguity e’® is removed, and one separates
the real and imaginary parts of g, the resulting settings are
both optimal and provide ISI-free settings that reveal the
transmitted 2-PAM sequences at different delays.

The existence of the global minima points (15) can be
interpreted as follows: the transmitted 2-PAM constellation
will not appear after equalization as an arbitrarily rotated
2-PAM constellation, as one might expect, but rather as an
arbitrarily rotated 4-point constellation! Each of the two
pairs of this constellation will carry however, as already
mentioned, the ISl-free transmitted data.

In the light of Theorem I, it is clear that the results ob-
tained in [10], [9], {11], can be extended to include this par-
ticular case for which E{a?) = 0 is not satisfied. Clearly, in
the 2-PAM case, the polyphase CMA 2-2 algorithm (oper-
ating on an over-sampled received signal and/or using the
outputs of an antenna array) will admit (in the absence of
noise and common roots between all the different channel
phase polynomials) the settings of the form (15) as its global
minima.

It is also worth noting that Theorem I applies to Godard
functions of all orders p (see (2)). Moreover, similar results
can be obtained for decision-directed cost functions. Fi-
nally, it can be also shown that similar results are obtained
for multi-level PAM inputs.

3. MULTI-USER ALGORITHMS

CM algorithms have also been proposed in a number of
cases for either separating or finding one out of several co-
channel users. The emphasis is on the removal of the inter-
user interference (IUT). In the absence of significant channel
delay spread, the CM beamformer {13}, [14] has been shown
[15] to have global solutions that correspond to IUl-free
output signals, provided that the corresponding user signal
is symmetric sub-Gaussian (equations (6) and (7) are jointly
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satisfied). However, it may not be possible with this scheme
to recover all the user signals, or even predict which signal
will be extracted. Two alternative approaches to combat
this problem are the multi-stage CMA [16] and the MIMO-
CMA proposed in {17]. In the presence of delay spread,
the multi-user CMA proposed in [18] is able of combatting
jointly both the ISI and the IUI of the channel.

We now focus on the latter approach [18], since its cost
function can be seen as a generalization of the cost functions
for the algorithms proposed in [13] [14] and [17]. Assuming
a p-input-m-output MIMO linear channel and a m-input-p-
output MIMO linear equalizer, we denote by aj(k), 7 €
{1,...,p} the 5" transmitted signal, ni(k) the additive
noise sample at channel output ¢, yi(k), ¢ € {1,...,m}
the noisy received signal at channel output i and z;(k),j €
{1,...,p} the 7' equalizer output, all at time instant k.
We also denote by Hij, i € {1,...,m}, 7 € {1...p} a
L; x 1 vector representing the linear channel from input j
to channel output ¢ and by W;; a N x 1 vector that contains
the coefficients of the linear filter relating the i** received
signal to the j** output (we have assumed the channel H;;
to have L; non-zero discrete samples and each equalizer W,;
to have N coefficients). The signal model containing both
ISI and IUI is given by

wi(k) =Y H5A;(k)+mi(k), i€{1,...,m}  (18)

=1
and the equalizer outputs by
(k) = Y WIYik), je{l,....p}  (19)
=1
where r
Aj(k) = [a;(k) - - a;(k—N;+1)] (20)
and

Yi(k) = [yi(k) - - yi(k—L+1))" (21)
The MIMO-CMA cost function is given by

P P 7]
RW) = EY (15 -1)" +2 Y > In@)F

lin=1;l#n §&§=4,

(22)
where W is the Nm x p equalizer matrix defined as
Wi e Wip
w=| @ (23)
Wmi cer Wmp
with r
wi; = [Wi(0) - Wiy (N —1)] (24)

rin(68) is the cross-correlation function between users ! and
n defined as

rin(8) = E (z1(k)zn(k — 8)) (25)

If each signal a; (k) satisfies both equations (6) and (7), it is
possible to show [18] that the global minima of (22) corre-
spond to a vector equalizer output that contains possibly-
shifted and rotated by an arbitrary scalar versions of all the
different input signals (provided that some channel length-
and-zeros conditions hold). If the cross-correlation terms
were omitted in (22), each equalizer output would be up-
dated by a CMA 2-2 algorithm

W;(k+1) = W;(k)=uY" (k) (= (k) (1= (R)* = 1)) (26)
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Figure 1. The 2-PAM case

in which case it is found that each output z;(k) will be an
interference-free version of any of the input signals - this
coincides with the result in [15] —.

However, when the input is 2-PAM, it is easy to show
that (since each signal a;(k) satisfies (7)), the cost function
(22) admits as global minima the settings that correspond
to equalizer outputs of the following form:

z;(k) = eV=1e (cos¢ aji(k —l) + vV—1lsing aja(k — lz))

27
where j1 and 72 can take any value in {1, ...,p}. Theref(ore),
the output of each filter will not only appear as a four-point
constellation, but moreover, when decomposed in its real
and imaginary parts, it will reveal interference-free versions
of possibly different input signals. This performance will
appear in all the algorithms proposed in [13], [14], [17] and
[18], the difference being again that in the first case some
of the signals may not be found, whereas in the other two
cases the presence of the cross-correlation terms will result
in finding all the signals.

Therefore, in the multi-user case, the demodulation of the
CM algorithm outputs in the 2-PAM/complex channel case
is somewhat more complicated: the different user signals
can be found as the real or imaginary parts of different
equalizer outputs. Similar results apply to the analytical
CMA presented in {19)].

4. COMPUTER SIMULATION RESULTS

The following simple computer simulation result is pre-
sented in support of the validity of Theorem 1. We first
consider the case of a 2-PAM signal transmitted through a
channel with complex impulse response whose coefficients
were randomly chosen as

h[1]
h[2]

where h[1] and h[2] represent the odd end even parts of
the impulse response, respectively (we consider fractionally-
spaced equalization with an over-sampling factor of 2).

We run the CMA 2-2 algorithm (with a stepsize optimized
for maximal convergence speed) using 9 taps for each of the
two phases of the fractional equalizer (each one is initialized
with a center-spike pattern). Additive noise of SNR=40 dB
is added to the received signal. As can be seen in Fig-
ure 1, the algorithm converges quickly to a 4-point pattern:

[ —0.72+1.52j —0.56+1.62j +0.51—0.765 ]
[ —0.86+0.525 +1.22—1.86; +0.72+0.535 |
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Figure 2. The 4-PAM case

it 1s found that each of the two pairs of this constellation
corresponds to the transmitted 2-PAM signal at 2 different
delays. This verifies the validity of Theorem I and the pre-
diction of the expected 4-point pattern. A similar behavior
can be observed for the 4-PAM case, as shown in Figure
2. In this case the transmitted input belongs with equal
probabilities to the alphabet {~3, —1, 1, 3}, and the same
complex channel as in the previous experiment is used. No-
tice how after convergence the 4-point input has resulted
to a 16-point pattern equalizer output. Other simulation
results have shown the validity of (27) for the multi-user
2-PAM case.

5. CONCLUSIONS

We have identified a new class of global minima of Godard-
type equalizers in the case of 2-PAM input signals and com-
plex channel-equalizer cascades. These sets of global min-
1ma have two non-zero elements in the channel-equalizer im-
pulse response, indicating the presence of ISI and resulting
in a 4-point output constellation. However the orthogonal-
ity between the two non-zero elements results in a separa-
bility of the obtained signal: when decomposed in its real
and imaginary parts, these will be free of ISI. Similar re-
sults hold for other non-symmetric input signals, as well as
for multi-user CM algorithms. Apart from treating theoret-
ically a case that seems to have been neglected to date (since
it corresponds to non-symmetrical input signals) these re-
sults indicate how demodulation must be performed when
both single-user and multi-user CM algorithms are used for
blind equalization.
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