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ABSTRACT

The multiwindow approach is a meaningful
framework for nonparametric spectral estimation. It also
encompasses several conventional methods as WOSA and
frequency-averaged periodogram. Recently, some authors
claimed that the Slepian windows of the Thomson’s
method and other related optimal sets of windows show a
better performance in terms of resolution, variance and
leakage. In this paper, that claim is discussed by means of
some simulation examples and by applying the various
methods to speech recognition. In conclusion, frequency
averaging of the periodogram is a computationally simple
method that has a great flexibility for band specification
and comparatively shows good performance. In fact, it is
the spectral analysis technique most extensively
employed for speech recognition.

1. INTRODUCTION

Since Thomson’s work [1], several recent spectral
analysis methods are based on the multiwindow (MW)
approach. Given a signal x(n) between n=0 and n=N-1,
they estimate the power spectral density by averaging the
windowed petiodograms that result from K orthonormal
windows or tapers vi(n), 0<k<K-I1, 0<n<N-1, which are
optimal in a given way.

The set of Slepian windows or discrete prolate
spheroidal sequences used in the Thomson’s method can
be described as arising from the Karhunen-Logve
eigenequation that, written in the frequency domain, is [1]

1
SR Q(8)KN (0~ 0)Vi(0)d6 = LVi(w) (1)

where 0<k<K-1,Vi(w) is the Fourier transform of vg(n),
Ak is the corresponding eigenvalue, and Kn(w) is the
Dirichlet kernel, i.e. the Fourier transform of a rectangular
window ranging from 0 to N-1.
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The Slepian windows are obtained from the
Karhunen-Logve eigenequation when Q(w) of (1) is

I, - W<o<W

Q(w) = 0, ICO’ >W (2)

Choosing shapes for Q(w) others than the
rectangular one, different families of windows follow
from the integral equations (1). Those orthonormal
windows are also orthogonal with respect to Q(w) as
weight,

Every MW estimator computes an estimate S(@)
of S(w) by averaging in some way the power within a
band surrounding the current frequency @. Each window
contributes to this average favouring some subbands in
front of the others. If we wish to control that contribution,
we have to assign different weights ag to each windowed
periodogram, i.e.

. K-1 |N-1 )2
S(w)= XY ax| X vi(n)x(n)e” /"

K-1
sothat Jag=1.
k=0

In order to have a measure of the combined effect
of the set of windows on the frequency domain, a
composite spectral window (CSW) can be defined as

K-1 P
W)=Y a|Vi(o) 4)
k=0

As shown in the Mullis-Scharf’s tutorial of
quadratic estimators [2], both the time averaging of
periodograms (also called WOSA or Welch technique)
and the frequency averaging of the periodogram (FAP)
are also MW variants, In the WOSA case, the various
windows are time-shifted versions of a base window. The
FAP technique computes a weighted average of K
periodogram values within a given band around the
current frequency. Interpreting the FAP as a MW
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technique, the K windows result from multiplying a base
window v(n) by complex exponentials that produce
frequency shifts of its Fourier transform.

In this paper, some MW spectral estimators arising
from the eigenfunction framework (1) are experimentally
compared with the conventional MW estimators WOSA
and FAP. After discussing in Section 2 two reported
performance comparisons [3,4], we present in Section 3
some experimental examples that illustrate how the
Thomson’s method does not necessarily offer better
statistic performance than the conventional MW methods,
at least when both frequency and time resolution are
controlled.

In the MW estimators based on (1), frequency
resolution implicitly depends on the spectral function
O(w). In the Thomson’s approach, Qfw) is rectangular
(see (2)). As noted in [5], for peaked spectra, a sharper
Q(w) is able to obtain spectral estimates that show less
bias at peaks, as we will see in Section 4.

Time resolution is relevant for estimating
evolutionary spectra [6]. For instance, spectra of speech
signals are estimated frame-to-frame, since it is assumed
that every speech frame is approximately stationary. In
Section 5, we compare the various methods for speech
spectral estimation,

2. REMARKS ABOUT THE PERFORMANCE OF
MW METHODS

Some already published works [3,4] that compare
MW methods that use orthogonal windows (the
Thomson’s method [1] and the Clark-Mullis’s method
[4]) with the WOSA method arrive to the conclusion that
WOSA can not achieve a performance so good as that of
the optimal MW methods. However, those performance
comparisons do not effectively control either the
frequency or the time resolution of the various estimators.

In [3], the performance is measured in terms of
frequency resolution, variance and leakage. According to
that paper, the Thomson’s MW method “always performs
better that WOSA”™ since, selecting the design parameters
so that two measures are the same for each estimator, the
Thomson’s method shows better results for the third one.
In that work, the way of equalling the frequency
resolution for both methods consists of using the same
value of the bandwidth parameter W in (2) for the set of
Slepian windows of the Thomson’s method and for the
only WOSA window, which is taken as a first Slepian
sequence. However, the effective bandwidth of the CSW
increases with the number of sequences K so that the set
of Slepian windows has a broader CSW.

On the other hand, that work is not taking into
account the fact that, unlike the Thomson’s MW method,
WOSA with non-rectangular window weights both sides
of the data segment less than the middle part. Actually, it
is assumed, like in Thomson’s works, that only a segment
of data is known and, consequently, attention is not payed
to the higher resolution in the time domain that its WOSA

Copyright 1997 IEEE

version can offer to estimate an evolutionary spectrum
due to its smaller effective time length.

In the example presented in [4], the effective time
length is taken into account by allowing an enlargement
of the data segment for the WOSA method. In fact, as a
triangular window is used for the WOSA estimator, a
rectangular window of length N results from adding up
the various shifted versions of the triangular window.

However, in [4], the authors do not intend to
control the frequency resolution as they do not use the
same effective bandwidth for all the methods. As they
actually point out, whereas the CSW of the Thomson’s
method and that of their own method are roughly square-
shaped, the magnitude of the transform of the triangular
window has the main lobe of the squared sinc function.
Hence, their WOSA estimator could show a larger
frequency resolution. Unfortunately, it can not be
observed in their simulations since they use as example
the spectrum of an MA process which is rather smooth so
that resolution is not of importance in it.

3. SOME ILLUSTRATIVE EXAMPLES

Using the same MA process as in [4], and the same
number of data points, N=250, we have computed by
Monte-Carlo simulations the means and the variances of
the various techniques, intending to use the same
frequency resolution for all of them. To measure the
frequency resolution, we consider that it is inversely
proportional to the Parzen’s effective bandwidth [6] of the
CSW. Note that the WOSA’s CSW is the only spectral
window itself,

Thus, the triangular window of the WOSA method
has been shortened with respect to [4] in order to have the
same effective bandwidth as the Thomson’s estimator.
This shorter window allows a larger number (K=7) of
time-shifted windows running along the 250 data points.
Nevertheless, the effective time length of the WOSA
estimator is still smaller than that of the Thomson’s one
due to the smooth edges of the set of time-shifted
windows at both ends of the data segment. Notice that up
to 300 points were used in [4] for the WOSA method in
order to have an effective time length similar to that of
the Thomson’s method. There, the windows were shifted
half their length; in our experiment, the shifting is just
slightly larger.

Unlike in {4], the FAP method was also compared
in our simulation tests with the above two methods. Five
periodogram points were averaged at every frequency (i.e.
K=5) in order to have an effective bandwidth approxima-
tely equal to that of the Thomson’s method. A basic
rectangular window v(n) was used over the entire data
segment for the FAP method to have approximately the
same effective time length than the Thomson’s method.
Correspondingly, the K spectral windows are shifted
versions of (Kn(®) )?. Usually, the weights ag in (3) are
constant for the Thomson’s estimator. They were taken
constant for both methods in the simulations.
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Fig.1 MA process: (a) Sample means. (b) Zoom of the
peaks area. (¢) Sample variances.

The estimated means and variances of the three
methods for that MA process are depicted in Fig.1. As
apparent, the mean curves of the three estimators are very
similar and close to the exact spectrum, and the variance
curves of the Thomson’s and the FAP methods look like
the same. Additionally, the variance for WOSA is not
higher than that of the other two methods, but rather
lower. An opposite observation about WOSA'’s variance
was made in [4], in spite of the larger number of data
(300 points) that were used there. This difference can be
explained by the larger number of windows that can be
used in our WOSA version due to the fact that its
frequency resolution is made equivalent to those of the
other methods.

We next performed some tests with the peaky
spectrum of the fourth-order already AR process used in
[7], in order to compare more properly resolution and
leakage of the various estimators. Fig.2 shows the sample
means and variances of the spectrum estimates for the
three methods, using the same amount of data (N=250)
and the same number and type of windows that in the MA
process.

Again, the mean and variance curves of the
Thomson’s and the FAP methods are almost coincident in
the peaks area, and are close in the low-power intervals.
In this AR case, the variance of WOSA is not larger than
that of the Thomson’s method neither. The WOSA mean
shows a smaller leakage in the low-power regions due to
the relatively low sidelobes of the triangular window.

When a rectangular window is used, the WOSA
leakage is even larger than that of the other two methods.
However, its variance at the peaks is approximately the
same as that of the other methods, in spite of using only 5
non-overlapping (50 points long) windows in this case.
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Fig.2 AR process: (a) Sample means. (b) Zoom of the
peaks area. (c) Sample variances.

In conclusion, from our experiments, where both
frequency and time resolution are approximately
controlled, the Thomson’s method does not seem to give
better statistic performance than the conventional MW
estimators. Actually, its results look like those of the FAP
method.

4. NON-RECTANGULAR COMPOSITE SPECTRAL
WINDOW

The WOSA method is more able to indicate the
peaks position of the AR spectrum due to the fact that its
main spectral lobe is sharper than the main lobe of the
CSW of the Thomson’s method or the FAP method,
which are roughly square-shaped.

In order to obtain main lobes that are similarly
shaped, we modified both FAP and Thomson’s methods.
The CSW of the former was easily controlled by using a
weighted average of the periodogram points and
adequately choosing the set of weights. To control the
main Iobe of the Thomson’s CSW, Q(w).in (1) was given
a triangular form between -W and W, and gy were made
equal to the corresponding eigenvalues Agnormalized
with respect to their summation. The same technique
with a different shape for Q(w) was already presented in
[5]. In this way, a modified Thomson’s method results
whose set of windows shows an approximately triangular
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W(w). That CSW would be even closer to the triangle
O(w)if N were larger.

These modified techniques were tested again with
the same AR data. K was increased to 9 for them since the
width of the main lobe of the CSW is approximately
twice that of the non-modified methods. Interestingly
enough, the windows of the modified Thomson’s method
are much more regularly distributed in frequency than the
Siepian windows and their spectral shapes closely
ressemble those of the FAP ones, except in they show two
symmetric main lobes around the center frequency of the
averaging band.

Fig.3 depictes the sample mean and variances of
the three estimators. In accordance with the observation
of the last paragraph about the shapes of the spectral
windows, the means of the modified FAP and Thomson’s
methods are even closer than those of the non-modified
methods. Additionally, the three mean curves almost
coincide in the peak region. The variances are again
similar.

Summarizing, from the experiments we observe
that, when the CSW of the various techniques have a
similar shape, the statistic performance of the estimators
in terms of bias and variance is almost identical.
Additionally, if we know a priori that the spectrum has
prominent peaks, it will be useful to use a non-rectangular
CSW.
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Fig.3 AR process and triangular-shaped CSW: (a)
Sample means. (b) Zoom of the peaks area. (c) Sample
variances.
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5. APPLICATION TO SPEECH RECOGNITION

Assuming as usual that, in a short-term basis (20-
30ms), the speech signal can be modelled by a stationary
process, a frame-to-frame spectral analysis yields a
temporal sequence of spectral estimates that represent the
acoustic-perceptual content. As spectra of voiced speech
contain peaks (the formants), a CSW with a peaky shape
is a sensible choice for MW estimators. In fact, the
spectral parameters that are most widely used for speech
recognition (the mel-frequency cepstral coefficients) are
obtained through spectral estimation with the FAP
technique —on a non-uniform (mel) frequency scale— and
applying a triangular set of weights ax on the square
magnitude of the DFT samples.

With the very same three MW techniques of the
last section, we performed a speech recognition
experiment with the TI connected digits data base and
using continous density hidden Markov models. The
sampling rate was 8 KHz, the frame length was 250 (like
in Section 4), and the frame shift was 80. The estimated
powers of 12 bands uniformly distributed between 0 and
4 KHz were employed to represent a frame of the speech
signal. The relative differences in string recognition rate
between the three methods were less than 1%. Hence, the
result of this application is in accordance with the
remarks arising from the above simulations.

6. CONCLUSION

The weighted FAP is a sensible choice for practical
purposes since, apart from obtaining a performance
similar to that of optimal methods like Thomson’s one, it;
1) allows an easy control of the decisive composite
spectral window, 2) shows a great flexibility in defining
spectral bandwidths, and 3) has a relatively low
computational load (only one actual window). In fact,
with a triangular-like composite spectral window, a mel
frequency scale, and Hamming-windowing the data to
reduce leakage, FAP is the most employed method of
spectral analysis for speech recognition,
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