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1. ABSTRACT

A new recursive eigendecomposition algorithm of Complex
Hermitian Teeplitz matrices is studied. Based on Trench’s
inversion of Teeplitz matrices from their autoregressive
analysis, we have developed a fast recursive iterative
algorithm that takes into account the rank-one modification
of successive order Toeplitz matrices. To speed up the
computational time and to increase numerical stability of ill-
conditioned eigendecomposition in case of very short data
records analysis, we have extended this method by
introducing an ago-antagonistic  regularized reflection
coefficient via Levinson equation. We provide a geometrical
interpretation of this new recursive eigendecomposition.

2. PREAMBLE

Let us remind you that Levinson algorithm provides
Cholesky factorization of the inverse Tceplitz matrix. Rank-
one modification approach leads to the Gohberg-Semencul
formula which is an integrated version of Trench algorithm
[5]. Trench algorithm induces an order recursive structure of
the inverse Teeplitz matrix. We propose to exploit this
existing structure to achieve a fast and robust
eigendecomposition. First, we obtain eigenvalues by finding
the roots of an autoregressive parameters-based function [2].
At each order, a number of independent structurally identical
nonlinear problems is solved in parallel. Derivative of this
intermediate function is geometrically interpreted. In a
second step, via Levinson equation, reflection coefficient is
used to decrease computational complexity and increase
stability by an ago-antagonistic regularization [1]{2]. Ago-
antagonism [6], conceived as Minimum Free Enthalpy
concept in a thermodynamic analogy approach, extends
regularization method and avoids over-regularization
problems. Among research in the area of recursive eigenspace
decomposition, other algorithms have been proposed taking
advantage of direct Teeplitz matrix structure, like RISE [31[4],
but they are not very well adapted to very short data records
analysis.

3. RECURSIVE EIGENDECOMPOSITION VIA
AUTOREGRESSIVE ANALYSIS
3.1 Yule-Walker and Levinson Equation
Autoregressive analysis problem is solved by Yule-Walker
equation. Order recursive structure of Teeplitz correlation
matrix provides the recursive Levinson equation :
R,A,=-C, with p ___|: €o :—l]=|:Rn-l C;_-)1:|
" |Chi R e
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where ¢ ()
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C, = , = E[x,,.x;_k] and A =|°
Cp a®

with the following notation : v© =J.V"
where J is an anti-diagonal matrix. Then, Levinson
Equation is given by :

A -)
An =[ n_l]+un.[An—lJ Wherc ul\ = ai“) (1)
0 i
3.2 Cholesky, Trench and Gohberg-Semencul
Equation

Trench has found order recursive structure of the inverse
correlation Teeplitz matrix via autoregressive parameters :

R-l =d = an-l an—]'A:-l
" "o Ay ® oA, LAL 2
0+
or Rl'=o, =[ 0 “'1"“"}+an_1.Tn_,.T;’_,
On—lxn—l q)n—l
- 2] - 1
where : g1 =[1—|l1n| ]'anl-l and Tn-1=[A ]
n-1

It prooves that Levinson algorithm correponds to the
Cholesky factorization of @, =R :

n-1
R = E,Oak.Tk.T{ =B,.I,.B;

where :
Ok—l

B, =[Y® YO, Y® =] 1 | and T, = diag{et, ,.....00}
An—k

Adding a rank-one modification to an Hermitian matrix has
the same effect as appending a column to the triangular matrix
of its Cholesky factorization. In the same way, Trench has
identified an other equivalent matrix structure of the inverse
Teeplitz correlation matrix :

R;ll =(I)n =[

If we consider rank-one modification from one order to the
next, we find the Gohberg-Semencul formula :

(=) A3 )
q)n-l + Oy A n-t 'An-l Oy A n-1 :l (3)
=)+
o, AL o

n-1

0 .. = 0 0

Let: 10 ... 0
Z,=10 1 . .
10

0 ..0 10
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VR =R -Z,R}Z! =, .{Tn_, T, (2, .T;:}).(zn.rgjg)*]

Let: w, =.o,.T,

VR;'=R;' -Z,R;'Z, =W, W, -(Z, WD)z, W32)
After n steps :

VER;! = (Z5.W,  J(ZEW, ) - (Z5 W )(zE W)

It leads to the following equation, that is an integrated Trench
Algorithm version, known as Gohberg-Semencul formula.

R;' =Q,Q; -K,K; with Q, =[W,, Z,W,, .. ZI'W,_]
and K, =[z, W3 ZIw) VARt

3.3 Recursive Eigendecomposition

Our algorithm uses rank-one modification structure of the
successive inverse Teeplitz matrix to provide a recursive
eigendecomposition :

@ _R_l_[ LI oA, ]
n~ ®n T

Uy Ay, @+ A, AL

n-1-4*n-1

o, XV =nP X  wih X =[ . ]
o T X =0 X0 @
= {An—l'[an—l ,T;_],Xi“)]-f(d)n_l —ni")-l..-n)-&") =0
If we assume that eigenvectors and eigenvalues at previous
order are known :
{Un—l =[XYH) x:‘—_ll)] with UL,.U,,; =U,, Uy, =1,
U, ®,,.U,, = A, =diag{..n{"™",..}
Then, eigenvalues are recursively provided by roots of
function F™ , and eigenvectors can be computed by (6) :
1A+_,.X§"'“l2 _

FO () = —o_ +0,_,q0 Tt 1 _g 5)
( k ) k n-1 7 Ya-1- T i=‘(n§n—l)_n;n))

{n) Xg“)

X = [-—ni").X&) 'Un—l'(An—] - nf(n)'ln—l)'U;—l'An—l
If we apply corollaire of Courant-Fisher theorem, it proves
the interlacing of eigenvalues at successive orders, because
inverse correlation matrix ®_, is included in ®,. We also
know that the inverse eigenvalues are all positive and inferior
to the inverse prediction error power 0o, :
0<n™ <n®m P «n® << <D <P <a,

The interlacing structure of the inverse eigenvalues simplifies
research of F™ roots because derivative of this function is
strictly greater than unity :

— 112
FEVM _ L AL X
an n-1 .k=l (-n;""l) _ n)2
Qur algorithm is reduced to n parallel researches of one root of
(n) : - e
F™(.) on each interval ]Tlﬁ D e l)[.

(6)

M

>1

Recursive structure of the inverse Teeplitz matrix allows to
obtain a new equation about derivative of F* :
=X X" with XM X" =3, butif weuse(2):

:

n-1 (Dn—l
F(D) oy @®
n P
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In the same way, expression (3) provides :
0, T X = X ®
n n m)! -
and g _|~NOX0{(@e - 17) AL (10)
k x(n)
k.o
eigenvalues are also provided by roots of :
a-i[A XD : 1
G(n)(nin)) = T]i") =0y Oy nf(n)mz'l (ngnll) —nin)l) =0 ( )
with G7(P) o, 12
- n n 2
m - gPxe)
4. GEOMETRICAL INTERPRETATION
4.1 Projection Interpretation

By identification of these two following expressions of the
inverse correlation Tceplitz matrix ¢, we have :

o, O, p-Agy B () 3o () ()

P, =[ A o ! . = Zng XXy

an—l‘ n-1 n-1 +a’n—] 'An—l 'An—l k=1

(n) y(n}*
n 2 a7 X
= () |yr(n) _ k k1 (n)

a,,=3xn 'Xk',lll and T =3X——>—X

k=1 k=l O,

From equation (8), we deduce a geometrical relation :

n n ~! n n -1
ZIBF—“(—H(‘—))) -1 and Tﬂ_ﬁﬁ{ﬂ'ﬁ_’)) X0 13)
k=

H o n | X3
In the Hilbert Space, the inverse derivative of F"(n,™)
appears as the projection of vector [1 A,,]" ( AR prediction

vector) on eigenvector X,®, normalized by its first
component X§';)I

-1
Hm(n)
JF* (le ) =IxmP 1 X _ P {1 Xy
an —I k.l| N n—l'x(n) _| klf - n-l’x

Kl k.1
with  (.,.): inner product
In the same way, we have :

i{ac@(nr»]":l » mzi[ac‘”(ni"’)]l XY 4)

= - R
4.2 Additional results
By using (13) and (6), we proove a new geometrical result :

- i{aF(")(“‘k“))}—l_ .o 1s)
= on (ngn—l) _ ﬂi"))
In the same way, by using (13) and (10), we have also :
i[aG(n) (nin))]—l . i (16)
S ) o)

4.3 New expression of reflection coefficient
By identification of @  with two different approaches :
o, =[ Oy o, AL . ]= ini“’.XL“’-X‘k“‘”*
o, _ A O o, A AL k=

we can express reflection coefficients in an other way :
S X x0T

— a(0-1) _ k=1
pn—l a0 =

n-1""*n-1

2

(n)
Xk,l

n
= (n)
and Oy = ann !

o k=1

n-1

n
{ (n)*
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an
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5. RECURSIVE EIGENDECOMPOSITION VIA
REFLECTION COEFFICIENT
5.1 Notations

x(n) o - X(B)

E(n) [W) and ‘Yi ) = A(,| ) [X(:n,)J (18)
()] @ (T

flim:[a‘: ) g | % () (19)
an o

o = o = XLXEY
f(n' D ya-b® gTVEED o)
o D(p® i (=D f (Y _
(n7)=7 ™" 1) and p{"(n{ )' (™ )
5.2 Eigenvalues and eigenvectors
By using previous notations, we have developed the
following equations. Eigenvalues are roots of :

n-1 fn—l). (n—l)
FO(n) = 1 - oo+ (1-af i3 ]——"p‘ n(fx‘) =0

(™) = o oyt
n n —_ n -
G (nk )_ le _an—l +( |un| )an 1 (n 1) =0

v;/here:
-1
" n=1 p(n—l) g(n—l)
£ = [ ( ~|sa- 1]) a1 ——(n‘“"’ n(n)):| (22)

~1
) n-l gD Y(n-l)
gﬁ)-[ (1= 2(6(—>,,(—))]

and eigenvectors are provided by :

1 1
ﬂ
S| 3] U
X ny o] JOy g X0 x;n_—lxl)‘_ _' ptD 3)
pN
1
’cgn-l)
(m) n _ (n-1)
));(n) = —T]in) (] Iun-ll) Oy 1|:§tn :: i::-iiJ nzr{l)
-1l §| oy’
|

5.3 Levinson Equation Utilization

Levinson equation allows to decrease computational
complexity by introducing a reflection coefficient and to
increase robustness by regularization. If we consider the
following equation deduced from (1) :

1 0
T.,= " |-[a +p, | AD, |= T2 +u 0
n-1 An—l B—Z n-1°| ri—2 0 n-1" T[(l:)2

and equation (4), it provides a recursive equation about the
following vectors product :
n(n) X(n)

o

T X =Ty, X +i T X =
n-1

In the same way, if we use equation (9) and Levinson equation,
we obtain this associated equation :

—m T‘(n) X(n)
() y(n) - yw(n) * +
Tn-l X Tn 2 X +“‘n—1'Tn 2- Xk —'——a—

With the previously defined notations, it leads to :

n-1
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(n-1) Oyy Z(’(n D}
(pin) ~_ Oy (g)k i=1
" .
nk [1 +p’n—1 an—l Zp(n—]) (24)
f(n—l) oy, - Zp(n-”]
(n) i=1
k (n) : 3
le [1 ERTRN .goﬁ“‘“
i= |

Levinson equation (1) also provides :

A, A A,
A = n l -1 n T( )
n [ 0 ]+un [ 1 :| [ 0 un n-1

ALXP = AL X 4, T XD

In the same way, we obtain
A( )+ X(n) A( A8 X(n) +P- T+ X(n)
n*
By using equatlons (4,9) and (6,10), equations are reduced to :
ol @1 o (n-1p
TR L e S
an—l i=1 (Tl =Mk )
™ _ nk n_.(p(n—l) (n-1) g(n-l)'
a n

T -l ‘W

5.4 New Recursive Eigendecomposition
We have developed a new recursive eigendecompostion
algorithm via reﬂection coefﬁcient
(n) (n) (n)‘ (n) (n)

Opy o

This coefficient will be computed by an AR analysis.
6. AGO-ANTAGONISTIC REGULARIZATION

We have developed different approaches [1,2] to compute  :
6.1 Maximum Entropy Approach

fa(n)= za"”. Xk » bu(n)= Za‘“’" Xpme and 2™ =1

@25)

n-1

n-1

Classical Burg

E™ =U"™ with U™ =

f 2 2
2.(N —m .,EL“‘(")' +ba(®)

(my*
Vl‘m U(M) = p’m'G(m) +D(m) =0= B =~ G(m)
P N (2D
G™=—— z]f A @ b -1
with No-mo
D'™ = ﬁ,ﬁ +b {(n=1f,_(n)
6.2 Minimum Free Energy Approach
Regularized Burg

EM™ - ym 4 ZY M™with M = 1}2 A(m)(f)

df
-1/2 At

A™(f)= SalPe* = APD(f) 4y emom AT ()

k=0

D(m) D(m) +[

.
B(m) (m-1) a(m-l)j|
k 1

let 28)

Gg = G(m) + Z.ké’ﬁkm).la:‘m—l)l
(m)* s
Wy = —GT“;) and B™ =7y, +7,.2.n) .(k-m)®
reg
6.3 Minimum Free Enthalpy Approach
Ago-antagonistic Burg

E™ =y™ 4 ﬁ ¥ M +8.Ln[l—|um|2]
k=0
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with 1 = ()" 2™ and 7, Lnft—lu, '] =

l_hlm |2
D +1, G = 1—2—5|Lni2 but p, DI’ € R
n .D(m)
weset & = —I‘;‘)—f » [Eml <1 rootof
&, D
(-5 G +P]) =288, and =50

O is optimal when the straight line of the right term is
tangential to 3rd order polynomial of the left term :

Q&n) = (1-E2){En G + /D)) = 280 & (30)
dQ8n) _, 5
&, 7
Final result is computed by a substitution method [2].
7. RESULTS
7.1 Recursive Eigendecompositio_n
) i 1.
_ VA WAWAS ,

fr

Fig.1 : F®(n) for 8 complex samples

7.2 Classical and Regularized Burg Spectrum

Potes du Htre ouloregenssit

Fig. 2.1 ME Spectrum and poles with 2
eigenfrequencies with 10 complex samples
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Fig. 2.2 Regularized Spectrum and poles
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7.3 Ago-antagonistic Burg Spectrum
Time-doppler spectrum analysis of 8 complex radar samples
from an helicopter data records :

Fig.3.1 Classical time-doppler Burg Spectrum

Fig.3.2 Regularized time-doppler Spectrum

Fig.3.3 Ago-antagonistic time-doppler Spectrum
Ago-antagonism  avoids smoothing effects of over-
regularization methods and allows to restore some fine details
by increasing spectrum resolution.
8. CONCLUSION
We have developed a new algorithm that finds the complete
eigenspace decomposition of successively larger Hermitian
Teeplitz matrix. Computation and robustness performances
are provided by the ago-antagonistic reflection coefficient.
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