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ABSTRACT

Peak matched multiple windows are found as the Kar-
hunen-Loé&ve basis functions of a predefined peaked spec-
trum. With a penalty function, an optimization proce-
dure can be constrained with resulting control of sidelobes.
Weighting factors, included in the averaging of the peri-
odograms, can be designed to fulfill certain constraints. De-
sirable properties are low variance and small bias. This pa-
per presents a discussion of minimization of variance at the
peak compared with the optimization that also include the
neighbourhood of the peak.

1. INTRODUCTION

Spectrum estimation methods can be divided into two
groups, parametric and non-parametric. The usual argu-
ment for using parametric methods, e.g., AR-estimates,
is that the frequency resolution is much higher than for
the non-parametric. The algorithms for computing AR-
estimates are, however, often sensitive to model errors and
computationally demanding. With the exploitation of the
FFT-algorithm, the non-parametric methods and especially
the windowed periodogram, are less complicated when it
comes to calculations.

The advantage of the multiple window methods is re-
duced variance without decreased resolution or use of more
data compared to the use of single window methods, [1,2,3].
Multiple window methods are thereby especially useful for
non-stationary data.

2. PROBLEM FORMULATION

The power density spectrum, Sz(f), of the zero mean com-
plex valued stationary random process, z(n), is given. The
spectrum is assumed to have a peak located at f = 0.

With use of the N samples x = [2(0) ... z(N — 1)]7,
where the superscript T denotes the vector transposition,
the spectrum should be estimated by

K-1
8:(f) = Y esSi(f) (1)
where
N-1 .
Si(f) =1 z(m)hi(m)e=32I" |2 (2)
n=0
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is the estimated subspectrum number i. Equation (2) is
a periodogram obtained by using the data window h; =
[R:(0) ... hi(N —1)]F. A weighted sum of K subspectra
provides the estimate in Eq. (1).

2.1. Window Estimation

The windows h;, ¢ =0 ... K —1, K > 1, will be designed
to give a low variance and small bias estimate of S, (f). Re-
duction of the variance is achieved with uncorrelated sub-
spectrum S;(f) at the peak. Bias is reduced by preventing
leakage from distant frequencies. To prevent leakage from
regions outside a predetermined interval of width B, the
Fourier transforms H;(f) of h;, i =0 ... K — 1 have to be
band-limited to the interval (—B/2, B/2). The mainlobe of
H;(f) should be inside this band and the sidelobes should
be as low as possible.

The power of the output signal within the frequency in-
terval (—B/2,B/2) is

K-1 B/2 K-1
Pp=Y a,-/ \H:(f)*Sa(f)df = Y oI Rphs.
§==0 -B/2 i=0

()
The (N x N) Toeplitz covariance matrix Rp has the ele-
ments rp(l) = r.(I)*B sinc(Bl), 0 < JI| < N—1, where r,(])
is the covariance function of z(n), sinc(u) = sin(#u)/7wu and
* denotes the convolution operator. The covariance func-
tion r, () is found from a known peaked spectrum S, (f),

Sl(f)=eﬁ'£'m, Ifl < 1/2. (4)

The optimization is performed subject to the constraint

K—-1 1/2 K-1
Pr=Y o[BS = Y aihTRobi =1
i=0 -1/2 i=0
(5)

where S.(f) has the corresponding Toeplitz covariance ma-
trix Rz.

The covariance matrix Rz = Rg corresponds to a
penalty frequency function Sy(f) = G, B/2 <| f |< 1/2,
and S,(f) =1, —B/2 < f < B/2, which is used to reduce
the leakage from the sidelobes.

Equation (5) is a constraint that bounds the output power
from the filterbank. The window design problem is formu-
lated as

max Pp subject to Pz =1. (6)

hi,a;
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The solution with respect to h; is given by the generalized
eigenvalue problem

Rgq: = iRzq;, i=0...N—1, (7
where the eigenvalues are ordered in decreasing magnitude,
Ao > A1 > ... > An-1. The eigenvectors corresponding to
the K largest eigenvalues are used as windows, h; = q; =
[¢:(0) :(1) ... :(N-1)]7,i=0 ... K—1. The solution of
Eq. (7) with G = 0 dB (Rz = I) gives windows which are
the Karhunen-Loéve eigenvectors of Rp. These windows
are called the Peak Matched Multiple Windows (PM MW).
With G = 30 dB the windows have suppressed sidelobes by
30 dB outside the optimization interval. The windows are
named PM_30 MW.

2.2. Optimization of Weighting Factors
The criterion for optimization of the weighting factors a =

[@o @1 ... ax—1]T is minimization of
M
> Variance 8,(fn)- (8)

n=-M

with f, = 3% and

K-1K-1
Variance 5.(f.) = Y Y asajcov[Si(fa)Si(f)]. (9)

§=0 i=0

The parameter M defines the interval around the peak to
be included in the criterion. Defining x” ®(f,)h; = A;, the
covariance can be expressed as

cov[Si(fa)Si(fn)] = cov[A A: A 4;)
= E[A: AP AF A;) - E[A; AF)B[AF 4))
= E[A; AY|E[AF A;) + E[A: A;)E[AF AT
= |hi 8" (fo)Rx 2(f2)h; 1" + |bi 2(f2)Rx 2(fa)h;l", (10)
where ®(f,) = diag[l e /2™» .., 2" (N=Ufn] and
E[xx”] = Rx. The windows are the eigenvectors from the
solution of Eq. (7) and they are the approximate eigenvec-
tors of Rx for sufficiently large N.

The window hy filters the spectrum at the frequency f,. =
0 and the resultmg value is Ao. This value is squared and
multiplied by a?. The window h; has its center-frequency
at f = :l:—N and filters the spectrum with the resulting
value A; which is squared and multiplied by o?. The sum
of the result from all window functions are the variance of
the estimate S, (0).

For f. # 0, the process is repeated for the modulated
spectrum 7 (f.)Rx ®(fx). For i = 0 the window hy filters
the modulated spectrum S,(f — f). The resulting value is
An. The windows h;, i # 0, filter the modulated spectrum
at two different frequencies :t:;'ﬁ. Since the spectrum is no
longer symmetric around the zero frequency, the resulting
powers from the two filters are not equal The result will be
2 \nti| and 3X|._; where the factor } is a consequence of
the window function which has half its power at each side
of the zero frequency. The variance of the estimate S.(fn)
is given by the squares of the the two A multiplied with o?.
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The variance in Eq. (9) simplifies to

K-1
. 1 1
Variance S,(fa) = E af(§>\|n-i| + ‘2')‘|n+i|)2' (11)
i=0

The second term of Eq. (10) is large only for frequencies
inside the interval | f |< B/2 or in an equal interval around
the Nyquist frequency, and is excluded.

Minimization of Eq. (11) without any constraint will re-
sult in a zero valued parameter vector . A suitable con-
straint is to demand the bias of the peak to be zero which
simplifies to

K-1
Bias 5.(0) = Y ahiRxh; - 5.(0)
i=0
T
= " -5.(0) (12)
where Xo = [/\o e Ax_l]T.

The minimization of Eq. (11) is performed subject to the
constraint of unbiased peak, Eq. (12). The Lagrangian is

L=a"Sa+7(S.(0) — a” Ao) (13)

where 3 = Z _— dlag[/\w (3An-1) + )\|.,+1|)

(3Ain-k41) + 3 Antk-1))°]-
The gradlent of £ with respect to a is

d’l

da =2¥a — Ao (14)

and a solution is found when ¢ m = 0. The solution is a
minimum since X is positive definite and it is given by

S.(0)= "o
=22 20 15
XolTZ-1)¢ (15)

where M is a parameter.

3. EVALUATION

To investigate the weighting factors of Eq. (15), a test spec-
trum is used, defined as

Se(f) = So(f — 0.25) + So(f + 0.25). (16)

With the use of this spectrum instead of S,(f), an eval-
uation where the second term of Eq. (10) influences the
result at the peak is avoided. Small crosscorrelation terms
of Sz(f ~0.25) and S.(f + 0.25) will, however, be present.

The number of windows is chosen to K = 8 and the
window length is set to N = 128. The optimization interval
is defined to B = 0.08 and C = 20.

Three cases are studied where different values of M are
used. In case 1 the minimization is made just at the peak
frequency (M = 0) which gives a; o« 1/X;. Case 2 uses
M = 3 which minimizes the variance in the interval |f] <
0.01. In case 3, which minimizes in the interval |f| < 0.04
(M = 10), the resulting ¢; is proportional to ;. The three
cases are depicted in Figure 1.

These weighting factors are used to calculate the esti-
mated spectrum S:(f,) = E;_o i h{ 7 (£, )Rr®(fn)h;,
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Figure 1: The weighting factors, a, resulting from the min-
imization of variance in different frequency intervals, case 1
M =0, case 2 M = 3, case 3 M = 10.

where Rr is the corresponding covariance function of the
testspectrum S:(f). The estimated spectra for the three
cases and the two different types of windows are shown in
Figure 2. The dotted line is the true peaked spectrum S:(f)
and the dashed line is the estimated spectrum when the PM
MW are used. It is seen that the bias at the peak is zero
which was the constraint in the optimization of the vari-
ance. This is not the case for the PM_30 MW (solid line).
The PM MW are better approximations of the Karhunen-
Loéve basis functions to Rx. The result is compared to
the Thomson multiple window method. The Thomson win-
dows are derived from Eq. (7) with r(I) = ».(l) = ()
for B=0.08, o; = 1/8, i = 0...7 (Thomson8 MW) and
B=0.04, o; = 1/4,i=0...3 (Thomson4 MW). The bias of
the Thomson method is large at the peak and the resulting
estimate is smoothed the spectrum.
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Figure 2: The estimated spectra for the three cases and for
the Thomson method, case 1 M =0, case 2 M = 3, case 3
M =10 (solid line=PM_30 MW, dashed line=PM MW, dot-
ted line=S.(f)). Thomson method (solid line=Thomson8
MW, dashed line=Thomson4 MW).

The variance is calculated with use of Egs. (9,10), where
Sa(fn) and Rx are exchanged for S:(f») and Rr. To obtain
a comparable measure for different frequencies, the variance
is normalized with the squared expected value of the esti-
mate. The variance of the PM MW (dashed line) is lower
than for the PM_30 MW (solid line). This is compensated
with the better sidelobe suppression of the PM_30 MW. For
M = 0, the variance at the peak is small (1/8 for the PM
MW). This value is the optimal variance for K = 8 win-
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dows. Outside the peak, however, the variance is increased.
In case 2, the variance is small in the optimization interval
(marked with dotted lines) and increased outside. In case 3,
the weighting factors cooperate to minimize the variance in
the total interval |f| < 0.04. The conclusion is that the
weighting factors of case 3 is preferrable. The variance of
the Thomson8 MW method is smaller at the peak but larger
outside than the peak match technique.

case 1 case 2

%,2 022 024 026 028
Freq

case 3 Thomson

62 022 024 028 028 02 o022 024 028 028
Freq Freq

Figure 3: The estimated normalized variance for the three
cases and for the Thomson method, case 1 M = 0, case 2
M = 3, case 3 M = 10 (solid line=PM_30 MW, dashed
line=PM MW). Thomson method (solid line=Thomson8
MW, dashed line=Thomson4 MW).

3.1. Normalization for unbiased white noise spec-
trum

When the windows and the weighting factors optimized in
Section 2 are used in the estimator of Eq. (1), the property
of bias are considered for a peaked spectrum. The bias for
smooth spectra are not studied, even if it is an important
property for a spectrum estimator since smooth parts often
are included in a spectrum. Therefore, an unbiased estimate
for the spectrum of white noise is desirable. This property
is attained if

K-1

Z o;hT &% (£)RwB(f)h; — 5. (F)
Kot

= Z olahTh; — 8,(f) =0 (17

=0

Bias S.,(f)

where Rw = 021 is the covariance matrix for the white
noise process. The spectrum S, (f) = o2 for all frequen-
cies. For the PM MW, hTh; = 1, and Eq. (17) simplifies to
Efi;l a; = 1 as a constraint for unbiased white noise spec-
trum. The PM_30 MW fulfil hy Rgh; = 1, but h7h; # 1in
the general case. To achieve an unbiased spectrum the win-
dows are normalized, ﬁ Unbiased white noise spec-
trum is now given as a, = E%{ where 1 is a column vector
with ones in all positions.

The variance for the peaked spectrum does not alter for
the PM MW as the spectrum is just scaled with a factor.
For the PM_30 MW, the normalization of windows will give
a small change in variance. The average squared bias has
decreased. The constraint of unbiased peak is, however, no

longer valid.
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For white noise spectrum the variance (0.219) of the PM
MW method, case 3, is small as the windows are orthogonal.
The PM_30 MW, case 3, do not have this property which
will give a slightly higher variance (0.220). A comparison
between the methods shows that the Thomson8 MW, as
expected, are preferable (0.125), but that the PM MW and
PM_30 MW methods are comparable to the Thomson4 MW

(0.25).

4. NUMERICAL EXAMPLES

Simulated ARMA-process data are used to test the perfor-
mance of the proposed methods with the normalized weight-
ing factors of case 3 in Section 2. The simulation examples
aim at illustrating two different types of spectrum dynam-
ics; spectrum with peaks and notches and low-frequency
dominant spectrum with large dynamics. The alteration
in normalized mean square error, bias and variance with
changing frequency for the different spectrum examples will
be illustrated.
Ezample 1

The ARMA spectrum with two poles, py 2 = 0.95¢+7270:1
and two zeros z1,2 = 0.95e¥72"%3 is studied. The results
are depicted in Figure 4 with PM _30 MW as the solid
line and PM MW as the dashed line. The results from the
Thomson8 MW (dash-dotted line) and the single Hanning
window (dotted line) are also shown.

The bias is smallest for the single Hanning window, but
the results for the PM_30 MW are better than for the Thom-
son8 MW for all frequencies. Both the peak matched meth-
ods are comparable in estimating the peak. The notch
is, however, estimated with more success with use of the
PM_30 MW as the leakage properties are better. The vari-
ance result of the PM_30 MW is about the same as the
Thomson8 MW but taking the better bias property into
account, the PM_30 MW is the method to use for spectrum
with peaks and notches as the normalized mean square er-
ror for the PM_30 MW method gives the smallest value for
almost all frequencies.
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Figure 4: The normalized bias; variance; mean square error,
(solid line=PM_30 MW, dashed line=PM MW, dash-dotted
line=Thomson8 MW, dotted line=Hanning window).

Ezample 2
In the following example a random process is gener-
ated by filtering white noise through a third-order lowpass
Butterworth-filter with cutoff frequency f = 0.1. Figure 5
indicates that the proposed methods give reliable results
also for flat spectra, although the Thomson8 MW method
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shows smaller variations in the passband than the peak
matched technique. The single Hanning window is able to
estimate spectrum variations of more than 60 dB for the
third order process. An advantage for the Hanning window
is the decay of the sidelobes, (18 dB/octave), which con-
tributes to the ability to track a steep slope. The multiple
window methods all have very little decay of the sidelobes.
The first prolate function window of the Thomson8 MW
can be used as a single window to estimate large dynamics
as the sidelobes are suppressed 140 dB. The following win-
dows limit the capability to about -40 dB. For the PM MW
and PM_30 MW methods, all the windows have about the
same sidelobe suppression. The PM_30 MW reach down to
-50 dB which is lower than the Thomson8 MW.

Mean Square Error

[

i

1 ]
]

‘

]
T

os o8 0.8

'
'
1
v
)
'
'

[ X1
0.6

i
i
i
i
R
i
'
i
i
X i
i
i
i

'
'
'
o.4f oo
P
oaf o4t I
;
:
i
S

0.2 7

02

02
o »

-0.2 o
o 0.2 0.4 o 02 0.4 0 0.2 0.4
Freq Freq Freq

Figure 5: The normalized bias; variance; mean square error,
(solid line=PM_30 MW, dashed line=PM MW, dash-dotted
line=Thomson8 MW, dotted line=Hanning window).

5. CONCLUSIONS

Windowed periodograms are combined with weighting fac-
tors to the multiple window spectrum estimate. Minimiza-
tion of variance at the peak with respect to the weighting
factors give an estimate with optimal variance at the peak
but unacceptable result in the neighbourhood.

One solution is to minimize the variance at the peak as
well as in the neighbourhood. These weighting factors pos-
sess good qualities as the resulting spectrum estimate has
low variance and small bias in the predefined frequency
range around the peak.
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