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Abstract

This paper presents a general total least squares (GTLS)
solution for linear prediction to estimate closely spaced
sinusoids. It is found that the TLS prediction error is not
a good criterion to provide a robust solution. In this
paper, a frequency weighted prediction error approach is
introduced. Experimental results show that the GTLS
solution based on the frequency weighted prediction
error can give a robust performance even in very low
SNR.

I. Introduction

Resolving closely spaced sinusoids in the presence of
noise is a very difficult problem particularly when the
number of data is small and the SNR is low. Various
methods have been developed in solving this problem
such as autoregressive (AR) and autoregressive moving
average (ARMA) modeling 1], Pisarenko method [2],
principle eigenvector (PE) approach [3] and the total
least squares (TLS) approach [4,5,6]. It has been stated
that PE can be considered as a generalization of least
squares (LS) solution and TLS of Pisarenko method.
When both SNR is low and data length is short, TLS
method provides better results than PE method.

In this paper, a general TLS solution (GTLS) is
presented. It can be proved that the minimum norm TLS
solution (MTLS) and the TLS solution developed by
Rahman and Yu [4] (RYTLS) are the special cases of the
general solution. RYTLS is a TLS solution based on the
PE approximation of the data matrix and the observation
vector whereas the GTLS to be discussed in this paper is
a general solution for the PE approximation.

In view of the results obtained from MTLS, the TLS
prediction error is definitely not a good criterion to
provide a robust solution particularly for low SNR.
To overcome this problem, we use a frequency weighting
filter to pre-emphasize the data in the signal band. This
is equivalent to emphasize the frequency weighting of
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prediction error in the signal band. Applying the
frequency weighted data to the TLS method, the
resolution and the variance of the frequency estimates are
significantly improved. It is shown that the general
solution together with the frequency weighted prediction
error criterion can give a robust performance even in
very low SNR.

II. Frequency Estimation and Total Least Squares
Problem

The model of the received signal y, is described as:

K

Yn =2akcos(a)kn+@)+w,, , n=01..N-1 )]
k=1

where a;, @, and 6, are the amplitude, frequency and
phase of the k-th sinusoid, respectively. The noise
samples {w,} are assumed to be Gaussian distributed.
The frequency estimation problem is to estimate the
frequencies and amplitudes of the K sinusoids from the

received data record. The following set of linear
equation is commonly used to solve this problem.

Yo N Yp-1 xp Yp
341 Y2 yp xp—l _ yp+l
YN-p-t IN-p " IN-2 X1 YN-1
or Ax=b 2

where A is the linear prediction (LP) data matrix, x is the
LP vector, and b is the observation vector. In general the
order p of the LP vector x is larger than K.

Since the data are corrupted by noise, both the data
matrix and the observation vector are contaminated. The
TLS approach is more appropriate for solving the LP
problem. The TLS problem is basically defined as
follows:
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Given an overdetermined set of linear equations
Ax =b with p unknowns x, where A is a NXp

matrix and b is N x1 vector, the TLS problem seeks
to

minimize
[A,b)eRV(PHD

[4.6]-[4.5]] ©)

subject to b € range (A).

Once a minimized [./i,l;] is found, then any x satisfying
-~ - - -Ix
Ax=b or [A,b][ l] =0 1s called a TLS solution.
Applying singular value decomposition (SVD) to A and
[A,b] with {O';,} and {0} denoting the singular values
of A and [A,b], respectively, the TLS solution is given
in (4) when 0, >0 ,,; .

. thl,l

Vpelpl (4
Vptl,p

provided v, ,,, #0

Xmrrs =

Vpspe ]l is the (p+1)-th
singular vector corresponding to the singular value o ,,,
of [A,b].

where [V, Vo, oo

Rahman and Yu [4] described the following algorithm

based on PE approximation for computing the TLS

solution.

1. Compute the SVD  of
(4,6]=Udiag{oy,,0,,4}V .

[A,b], ie.

2. Determine the index M by Oy >0,,+€2
O ps1 2:-°2 0 p,y for some predefined £>0.

3. The TLS solution is given by

p+!

v,- y
_ ,p+1
XRyrLs =~ 2 5 Vi )
i=M+1 2
Z'Vk,,m'
k=M+1
4
where v; = .
Vip+l
p+l
In the case when ZIVL,,HI2 is too small, M can be
i=M+1

reduced until a nonzero v, ,,, is reached.
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As a comparison, it is shown from the experiments in
section V that the results of xyg;s is generally not as
good as those of xpyrrs -

IIl. General TLS Solution
The [A,b] can be written into the following form using
singular value decomposition:

p+l

[4.b)=) ouy] 6)
i=1

where u; isa Nx1 vectorand v; isa (p+1)X1 vector,

and * denotes the complex conjugate matrix transpose.
The principal singular vector approximation of [A,b]

using the largest M singular values is described by
M
[A,61=) cuy} 0
i=1

Then the TLS solution for [A,I; ] is spanned by the set of
singular vectors [vy,"--,¥p.]. Mathematically, the

TLS solution is given by

p+l v
_ ivi,p+l '
XGrs == 2 A E—— ®

i=M+1 Z 18, Viphl 12

k=M+1
where {f;} are some positive real numbers.

Let B; be related to the singular value o; as follow:

=
Bi=o0; )
Then, the general TLS solution is given by
+1 -
R Y, pi1 :
XgrLs =~ 2 By E——— (10)
=M+l zlo';q"k,pﬂ 2
k=M+

When g — e, xgp5 becomes xypyg; while g = 0,
XGrLs = XRyTLS -

According to the GTLS solution in (10), the prediction
ITOT € is given by

& + | XoTLS
e=| Y ouy; o (11
i=M+1

The mean squared prediction error is therefore given by
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& XG1LS ’
Egrs= 2 Giz(v?li _1 D

i=M+1

p+l1
2(1-q) 2
Z o Yl

= =M+l (12)

p+l 2
-q 2
E Gi Ivi,pH |

i=M+1

From equation (12), the mean squared prediction error of
Xyrrs (g =o0) is always smaller than that of Xgyris
(¢=0). However, the results of RYTLS is generally
much better than that of MTLS.  Therefore the
performance of TLS solution cannot be measured simply
by evaluating the prediction error. In next section, we
introduce a new criterion based on frequency weighting
approach to provide a practical measure to give a robust
GTLS solution.

IV. Frequency Weighted Total
Criterion

Least Squares

The approach is to pass the data {y,} to the frequency
weighting filter described as

p . .
1- zaLs(i)}’lZ_'
izl (13)

14
1= a5z
i=1

where [aLs(l),---,aLs(p)]T is the least squares solution

to equation (2). Let {z,} denote the output from the filter
W(z). The purpose of using W(z) is to pre-emphasize the
signal in {z,} to improve the effective SNR. It is shown
that the parameter v in the range of 0.2 to 0.6 can in
general provide good results.

W(z)=

The outputs {z,} are then applied to equation (2) and the
GTLS solution is given by (10). Applying the frequency
weighting filter to the data {y,} is equivalent to weight
the error more heavily in the signal band. Therefore the
TLS problem becomes minimizing frequency weighted
prediction error. It is shown in section V that the GTLS
solution using frequency weighting provides a significant
performance gain over MTLS and RYTLS.

V. Experimental Results

The signal model of the experiments is defined in (1).
We consider two closely spaced sinusoids with
frequencies @, = 0.78137 and @, = 0.76177 and
amplitudes equal. The phases of the sinusoids are
randomly selected from (0,2r). The noise {w,} is
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Gaussian distributed. Two SNRs are considered (0.5 dB
and 5 dB) in the experiments. The length N is set equal
to 128. The following results are averaged over 100
runs. For RYTLS and GTLS, the number of principal
eigenvectors, M, is set equal to 4.

In Fig.1, the frequency responses of MTLS and RYTLS
are compared for SNR = 5 dB. It is clear that the result
of RYTLS is much better than that of MTLS. It verifies
that minimum norm criterion does not necessarily
provide a good solution. Fig. 2 shows the unsuccessful
percentage of resolving the two sinusoids. The criteria
for determining the unsuccessful cases are: (1) the radius
of the roots of the LP polynomial is less than 0.9; and (ii)
the angles of the roots are outside the range of w, — Aw

and @, +Aw where Aw=w;~w®,. For the cases of

without weighting filter, more than 60% and 85% of
most GTLS solutions (of different g) are unresolved for
5 dB and 0.5 dB respectively. Comparing the cases with
weighting filter, the successful percentage is substantially
improved. And in particular, all cases can be resolved
for 5 dB when -275<¢<5S5. These resuits

demonstrate the effectiveness of the weighting filter.

To illustrate the frequency estimation error of using the
GTLS with weighting filter, the mean squared frequency
error (MSFE) defined as

L K
MSFE =101og,q KLLZE(@E” -,)* (14)
=1 i=1

where L equals the number of successful resolvable
cases. Fig. 3 shows the MSFE for SNR =5 dB with y=

0.5. The frequency estimate E)f’) is calculated from the

roots of the LP polynomial. Finally, the frequency
response of GTLS using frequency weighting with g = 0
and Y= 0.5 for 5 dB is plotted in Fig. 4. Comparing with
the results in Fig.1, GTLS with weighting filter provides
a very good solution with small variance.

Conclusions

A general TLS solution is discussed in this paper. By
applying frequency weighting to the linear prediction, a
robust TLS solution is obtained and its performance is
almost insensitive to SNR even close to 0 dB and a small
mean squared frequency error is achieved.
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Fig.3: Mean squared frequency error of all resolved
cases for 5dB (1.e. —2.75<¢<55)
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Fig.1: Frequency responses of MTLS and RYTLS for ~ Fig4 Fre.que.ncy responses of GTLS with frequency
SNR=5dB (a) MTLS, (b) RYTLS weighting (q=0 and y=0.5) for SNR=5dB
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