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Abstract— The problem of detection and estimation of har-
monics in multiplicative and additive noise is addressed. The
problem may be solved using i) the cyclic mean if the harmonic
amplitude is not zero mean or i) the cyclic variance if the har-
monic amplitude is zero mean. Solution ii) may be used when
the amplitude of the harmonic is not zero mean while solution
i) fails in the case of zero mean harmonic amplitude. This pa-
per answers the following question: given a multiplicative and
additive noisy environment, which solution is optimal? The pa-
per determines thresholds on the coherent to non coherent sine
powers ratio which delimitate the regions of optimality of the
two solutions. Comparison with higher-order cyclic statistics is
presented. Gaussian as well as non Gaussian noise sources are
studied.

1. Introduction

The problem of harmonics retrieval has received much atten-
tion in the literature. Most of the existing methods focus on
extracting coherent harmonics from additive noisy data. How-
ever, multiplicative noise is encountered in several signal pro-
cessing problems. For example, random amplitude modulation
phenomenon occurs in propagating underwater signals due to
the medium [2] and in radar signals due to scintillations of the
targets [8][1]. In this paper, we will be concerned with detec-
tion and estimation of a sinusoidal signal which has corrupted
by both multiplicative and additive noise. The multiplicative
noise decorrelates the sinusoid, spreads its power spectrum and
acts as an additional corrupting noise.

Consider N measurements of a discrete-time sinusoid in ad-
ditive and multiplicative noise

z(t) = (p + y(t)) cos(wt + ¢} +v(t), t=0,..N—-1 (1)

with the following assumptions: A1) the deterministic ampli-
tude p > 0; A2) y(t) is a white multiplicative noise with vari-
ance 02; A3) w and ¢ are the frequency and the phase of the
sinusoidal signal, assumed constants in the ranges (0, 7/2) and
(—m, ] respectively; A4) v(t) is a white additive noise with
variance oZ; A5) the multiplicative and additive noise sources
are mutually independent.

In the classical case of a constant amplitude harmonic in
additive noise, i.e. p # 0 and o2 = 0, the signal-to-noise
ratio (SNR) relative to the coherent sinusoid in the signal z?
is at most an eighth that of z; as will be shown in section
III. This explains why the spectrum of z? is never considered
in practice. The aim of this paper is to reconsider this result
when the harmonic is corrupted by a multiplicative noise.

Alternatively, if 4 = 0, the spectral analysis of z: contains in
general no information about the sinusoidal signal parameters.
However, the spectral analysis of 2 enables the detection and
estimation of the harmonic provided o2 # 0. This is the basic
idea of the Cyclic Variance (CV) [9][6] and fourth-order cumu-
lant based methods [2]{7]. Nevertheless, the spectral analysis
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of z(t) is useful if the multiplicative noise is a narrow band
signal. For instance, the frequency can be estimated using the
center of gravity of the spectrum of z(t) [1][4].

In the general case where u # 0 and o # 0, [9] and (6]
advocate the use of the Cyclic Mean (CM). However, the CV
method enables to solve the harmonic retrieval problem too.
One must therefore wonder which statistic yields the better
performance. It is worth noting that the CM and the CV tech-
niques are spectral analysis of z; and z7 respectively. In this
paper, we will demonstrate that the CV method outperforms
the CM method not only for u = 0, but also for non zero val-
ues of u ranging from O to a threshold which depends on the
probability density function (pdf) of the noise sources. In other
words, the paper answers the following question: for given p
and o2, up to which value of the multiplicative noise power 03,
is the CM method optimal?

II. Harmonic Retrieval using the CM and CV
Statistics

The beginning of this section presents the cyclic approach for
the harmonic parameter estimation proposed in [9]. We then
compute the finite sample variances of the CM and the CV
statistics. This will enable us to derive the optimality criterion
proposed in the next section.

The periodic nature of the sinusoidal signal makes z(t) cyclo-
stationary [3]. Since the mean and the variance of z(t) are pe-
riodically time-varying, one considers their generalized Fourier
series coefficients, which are called the cyclic mean (CM) and
the cyclic variance [3]. The frequency w can be estimated by

(9]

1\71=(a)| or 5@ =% arg max

ioa(050)| 2

&M =arg max
a>0

a>0

where Miz(a) = % Nolze ot and Mao(o;0) =
4+ V=1 z2e~3ot. The CV method requires w to be in (0,/2)
in order to avoid the aliasing phenomenon. In order to carry

out the performance evaluation of the CM and CV methods,
one needs the following proposition. Let ma,, may, m3, and
my, be the third and fourth-order moments of y: and v, re-

spectively.
Proposition. The finite sample variances of the CM and
the CV estimates are, under assumptions AI1-A5, given by

—~ 62
var {Mlz(a)} =% ('il + "3) + ﬁTCN(zw’ 29)
var {M,‘,z (a’ 0) = % (4/1420!21 + 4p'm3y + M4y — 0':)
(3 + 24 On (20, 26) + 5 On (4w, 49))
+402 (4 +02) (2 + 2Cn (2w, 29))
+% (m4” — 0'14,) + W}-!'4[.l.m3uCN(w: d))
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where

Cn (kw, k¢) & "“‘ cos("“"(N 1)+ k¢), Yk R
The above proposition provides the exact variances of the
CM and CV statistics for any number of measurements.
The terms in N™2? are functions of the Dirichlet Kernel
sin(AN)/ sin(A), which is equal to N when X is an integer mul-
tiple of #. The terms in N2 can then be neglected if w and 2w
are outside the main lobes of the Dirichlet Kernel centered at

0 and 7. Therefore, in what follows, N will be assumed large
enough to satisfy

w/2

2] ®

I111. CM versus CV

According to section II, both the CM and the CV method
may be used for the detection and estimation of the sinusoidal
signal if u # 0. The goal of this section is to provide statistical
tools for choosing between the two methods. The criterion of
optimality can be based on the measure of the ratios

N>m.';xx{"r

L fhz(:) . Ry = L ﬁa:(zj;m "
var{Mh,} uar{Mgz}

The greater these ratios, the better enhancement of the peak
in the CM and CV statistics. The CV method is optimal if
Rz >Ri. The CM and the CV methods may simply be re-
garded as the estimation of a sinusoidal signal in additive noise
with different SNRs. The more the SNR decreases, the more
difficult it will be to detect the desired line spectrum. Next, we
establish the link between R; and R» and the corresponding
SNRs. Evaluating the performance by means of SNRs will en-
able us to generalize our results to any linear processor-based
methods.
The signal z; can be written as

zs = 81(t) + &1(28) (5)

where 31 (t) = pcos(wt + ¢) and & (t) = y(t) cos(wt + @) + v(t}.
Moreover, 31(t) and £)(t) are decorrelated. The CM-based har-
monic retrieval regards s, (t) as the desired signal and £:(t) as
an additive noise. We can now define the SNR which is relative
to the CM method, under condition (3), as

P T 25
SNHRy = —};'“[-ﬂ——— _!t;_2+Ho' (6)
Ty i

+>., F{em}

The index ; refers to the order of the used cyclic statistic. In the
same way, the signal and noise decomposition of z? results in
a coherent sinusoid of frequency 2w and a white additive noise.
The SNR corresponding to the CV method under condition
(3), is found to be

24 o2y2
B ™

% (4;420;‘; +4pmay+may —a§)+203 (u2+02)+my,—al

SNR2 o~

Under condition (3), the ratios R; and Ry and SNR; and

SNR; are linked by
SNR; ~2N R?}; SNR;~2NR} (8)

We can then define the relative efficiency of the CV method
with respect to the CM method as

REL S (9)
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Before treating the multiplicative noise effects, it is worth not-
ing that in the pure additive noise case (i.e. o2 = 0), RE is at
most equal to 1/8:

RE = (s+4 (ﬂ;}ﬂ - 1) ﬁ%)—l <1/8 (10)

since the ratio —‘QM for continuous valued random variables is
necessarily strxctly greater than 1 due to Cauchy-Swharz in-
equality. Therefore, the CM is by far the best method in this
case. In what follows, we will prove that this result can be
wrong in the presence of multiplicative noise. Below, we gen-
erally limit our study to symmetrically distributed noise.

A-Multiplicative Noise Source.

Result 1. In the case where the multiplicative noise is sym-
metrically distributed around O (the third order moment van-
ishes), the CV method is optimal if the coherent to non coherent
sine powers ratio satisfies the following condition

2

£!<91=—%-"f§”-+

Ty

5+ (s2p-5) +ae (o)

Notice that the lower the ratio ——ﬂ-, the greater the threshold

0, and the more the CV method Becomes optimal. To study
the relationship between the threshold #; and the noise pdf,
let us consider the generalized zero mean Gaussian pdf f(y) =
Wr(7e) <P — {-la , where I'(.) is the gamma function, a > 0 is
the shape parameter and b > 0 is the scale or size parameter.
The threshold 6; as a function of a is plotted in figure 1. We
then conclude that the more a increases (heavy-tailed pdfs),
the greater the performance gain using the CV method.

B- Multiplicative and Additive Noise Sources. In this
section, we study the influence of the additive noise on the
above optimality results.

Result 2. For symmetrically distributed multiplicative noise

pdfs, the CV method is optimal if f,‘-; satisfies
v

e; <Op= —‘12+3£7§—4'vno
.
v

274

(C2)

2 4 2
where 74 = 14% +11, 12 = 32§ + 8% (24 — 1) +12% -5

21/ v v v Y
and Yo = —2%‘1— ~1.

B-1- Gauss:an Multiplicative and Additive Noise sources.
Figure 2 displays the regions of optimality of the CM and the
CV methods. Figure 2 shows that for a given value of 03, the
domain of optimality of the CM method diminishes when the
variance of the additive noise o2 increases.

B-2-Non Gaussian Multiplicative and Gaussian Additive
Noise Sources. We assume that the pdf of the multiplicative
noise is the generalized Gaussian density. Thus, if the addi-
tive noise is Gaussian, the CM method is optimal if y satisfies
condition (C2) with v, = 3I'(1/a)T'(5/a)/T?(3/a) + 1607 /ot +

12%;- — 5. Figure 3 displays the variations of the threshold 6,
v

2
versus the ratio %5- for different values of a.
v

IV. Harmonic Retrieval using Higher Order Cyclic
Statistics

We have shown above that the square law transformation of
z(t) can improve greatly the estimation performance. Thus,
the following question becomes imperative: what is the contri-
bution of higher-order law transformations? In this paper, we
limit our study to the third and fourth-order cyclic statistics.
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A. Third-order cyclic statistics

The third-order cyclic moment (TCM) of z(t), which is the
generalized Fourier series coefficient of ms.(t;0,0), peaks at
a=0,a=wand o = 3w:

. N-1 -
Mar(@002 tim & TTI! max (00075

= may6(@)+ § [ +3u(e3+§02)tmsy |
(ej¢6(a—w)+e_j¢6(a+u))+
£ (1343102 +may ) (399 6(0—3uw)+e~ 138 5(a+3w))

(11)

The TCM can be estimated consistently from a single realiza-
tion by [3]

Mo (a:0,0)= S0 ! 2B(t)e it (12)
A consistent estimator of w is obtained by
;:argmaxlﬁ:sz(aioyo)l (13)

a>0

In contrast to the CV method, the TCM method has no limita-
tion on the range of the harmonic frequency provided u # 0 or
may # 0. The TCM contains no information on the harmonic
parameters if 4 = 0 in the case of symmetrically distributed
multiplicative noise.

B. Fourth-order cyclic statistics

In the same manner as for the TCM, the fourth-order cyclic
moment (FCM) of x(t) is given by

a N—1 _j
Miz(a0.00)= lim 37 " max(ti0,0,0) =7
) =1’g(n‘+6n’a}'+4umsy+m4y)
(e*7®6(a—4w)+e™ 4% 5(ataw))
+ [}t +6u202 +aumay+may)+ 3§ (u?+od)ed]
(52”’6(a—~2w)+¢—2”’6(a+2w))
+2y.m3y(¢j¢6(a—w)+c‘j¢5(a+w))+
[§(ut+6u 0l +apmay +may)+3(u* +02)ok +mau]é(a)

(14)

Using mgy < m4y03 which results from Cauchy-Schwarz in-
equality, we get

| M4z (2w;0,0,0)|>| My 5 (4w;0,0,0)| > My 3 (w;0,0,0)| (15)
Therefore, a consistent estimator of w is obtained by
o= M4 (030,0,0)
w %ar::‘:)axl 4z |\ | (16)

where My, (0;0,0,0) = & SNt zd(t)e it .
V. CM and CV versus TCM and FCM

We limit the comparison between the four first cyclic statis-
tics to the pure multiplicative noise case. Decomposing z°(t)
and z*(t) into sinusoidal signals and noise components, the
SNRs relative to the sinusoid of frequency w in z*(t) and the
sinusoid of frequency 2w in z*(t) are found to be

SNR F (A3 +3r02+x3)2
3 = AT 18R AT+ A2 (15rg —9)+6A (kg —r3) e —K2
_ &g()\4+6A2+4N3A+n4)2 17
SNRs = (1626 +3203 25 +16(3r4 —1) A4 +8(5r5 —4n3) A3 an
+8(3lc6—x4—2x§))‘2+8(n7—~nc3x4)k+ng—n.i)]
where m me ms
=g = = -
A Ty h3 3 Y ";-51.&5 =
kO g T T (18)
6= oS iRT= oy iRg= o5
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The In the case of symmetrically distributed multiplicative
noise, simplified expressions of SN Rz and SNR, are obtained
by setting k3 = 0, k5 = 0 and k7 = 0. When the multiplicative
noise pdf is the generalized Gaussian density, we obtain

(2 r(dyr(d r(iyr(2

Kq4 = '('Pz')(I:)L) ) K6 = _'%T“'(P )( ..() ), Kg = _(1-'“'2)( az() ) (19)
Figure 4 displays the variations of SNR;,SNR,, SNR;3; and
SNR, versus the ratio u?/ o2 for different values of the shape
parameter a. It turns out that, for given values of u2 /03 and
a, the maximum value of these SNRs is either SNR; or SNR,.
Therefore, the pair of methods CM and CV, is optimal with
respect to the pair TCM and FCM, whatever the value of the
shape parameter a.

VI. Simulations Results

To illustrate our theoretical results, we have computed the
CM and the CV for a number of realizations of the signal given
in (1). The sinusoidal frequency and phase are fixed at 0.4w
and 7 /3 respectively for all the experiments. In this paper, we
only present simulations in the pure Gaussian multiplicative
noise case. The normalized (by the maximum over a > Q) CM

and CV for different value of the ratio 5;- and N = 128 are

v
depicted in figure 5. We note that the simulation results are in
accordance with the theoretical predictions. The CV method
provides superior enhancement of the line spectrum with re-

spect to the CM method for small values of 5;- The converse
v

is true when 5;— exceeds 0.1703.
v

VII. Conclusions

In this paper, we have reconsidered some commonly used
results on the estimation of harmonics in a noisy environment.
In contrast to the additive noise case, the spectral analysis
of the square of the signal can result in increased estimation
accuracy and power detection compared to the spectral analysis
of the signal itself in the presence of multiplicative noise. Thus,
the cyclic variance method is shown to be optimal with respect
to the cyclic mean method in certain noisy environments. This
is true not only for zero mean harmonic amplitude, but also for
values of the mean ranging from 0 to a threshold which depends
on the probability density functions of the noise sources. The
CV method is shown to be more and more optimal for heavy-
tailed multiplicative noise pdfs. It is also shown that the pair
CM and CV methods outperforms methods based on higher-
order cyclic moments for a large class of multiplicative noise
pdfs including the Gaussian one. The choice of the optimal
statistic is crucial for short data records lengths. The complex
harmonic case will be presented elsewhere.

The optimal choice between the signal and its power-law
transformations derived in the paper is valid for any linear pro-
cessor. For example, the LMS adaptive line enhancer may give
better performance when its input is the square of the signal
rather than the signal itself [5]. This is due to the fact that the
output SNR obtained at the convergence (i.e. the Wiener solu-
tion) is an increasing function of the input SNR.. The following
table summarizes our results (where 6; is defined in result 2)

Conditions p’ > 00y | p* < 0207

Optimal input to linear processors z(t) z*(1)
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