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ABSTRACT

The problem of separating and estimating signals
received by an array whose array manifold has an un-
known structural form is usually referred to as the blind
signal copy problem. In this paper we consider the
blind signal copy problem for polynomial phase sig-
nals. By deriving the Cramer Rao bound we evalu-
ate the optimal performance achievable by any unbi-
ased estimator. To gain additional insight into this
problem we compare the CRB to the bound for the
case where the functional form of the array manifold
is known. We derive a computationally efficient ap-
proximate Maximum-Likelihood (ML) algorithm and
compare its performance with the bound.

1. INTRODUCTION

In this paper we consider the problem of separation and
estimation of signals received by an array whose array
manifold has an unknown structural form. This prob-
lem is usually referred to as the “blind signal copy”
problem. Blind estimation techniques rely on some
temporal or statistical properties of the source signals.
For example, fourth-order comulants methods exploit
the non-Gaussian nature of the source signals [1]-[2].
Other methods are based on the discrete-alphabet prop-
erty of digital signals [3]. In this paper we assume that
the source signals are polynomial phase signals,

To formulate the problem consider N signals im-
pinging on an array of M elements. The n-th signal is
sn(t)e?¥o* where wy is the carrier frequency and s,(2) is
a constant amplitude polynomial phase signal of known
order P.

P
sﬂ(t) = C'ne‘i“‘"(t) = a,.e’ Zrco bapt? (1)

Assuming that the instantaneous frequency variations
over the array are small compared to the center fre-
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quency, the demodulated and sampled received signal
can be modeled by,

N
x(tr) = Y ane* (™) 4 n(ty) = As(ty) +n(te) (2)

n=1

where a,, is the array manifold corresponding to the
n-th source, and A is the M x N matrix consisting of
array manifold vectors. We assume that {n,(t),m =
1,.-+, M} is a white zero mean complex circular Gaus-
sian random process with variance 7, and noise samples
at different sensors are uncorrelated with each other.
The identifiability of A is discussed in [1]. A can be at
best identified up to permutation and complex scaling
of its columns. Therefore, we can assume without loss
of generality that Ef=1 |8n(t)|* = K and b,g = 0 for
n= 1, N

The problem can be stated as follows: Given the

measurements {x(tx),k = 1,.--, K}, estimate the sig-
nal phase parameters {b,p,n=1,.--,N,p=1,..-, P}
and the array manifold vectors {a,,n=1,---,N}. In

the following, we derive the Cramer Rao bound (CRB)
for this problem. Next, we derive a computationally
efficient approximate Maximum-Likelihood (ML) algo-
rithm and compare its performance with the bound.

2. THE CRAMER RAO BOUND
Denote the vector of unknown parameters by ¢, i.e.,

¢= [n)bllx"'abNP»aT]T (3)
where by,p is the p-th phase parameter of the n-th source

and 8 contains the elements of A in a vector form
0= [Re{a:lr}’lm{a{}’ T ,R,e{a"}:,}, Im{a?v}]T 4)

Note that the complex amplitudes of the sources were
absorbed in 8.
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Figure 1: Various bounds on the frequency-rate
standard Deviation. f, = 60 Hz. Blind bound
(solid line), single source blind bound (dashed
line), non-blind bound (dash-dot line), single
source non-blind bound (dotted line).

The CRB for ¢ is given by CRB(¥) = [F(¥)]!
where F(¢) is the Fisher information matrix for ¥. For
Gaussian complex observations {x(t;)} the entries of
the Fisher Information Matrix (FIM) can be written
as,

F@)l = 2Re{tam"'”)]”R-lt"’m"“’)]} (5)

where R;(¢) is the covariance matrix of the observa-
tion vector [(x(¢1))%, -, (x(tx))T]T and m,(¥) is its
mean.

In our case R ($) = nl where I is the identity
matrix of dimension MK and

m,(¥) = [(4s(t1))T,- -, (As(tx))"]"  (6)
It follows that dm,(¥)/0n = 0 and

_&.;".—éﬂ = [(Db(h))T, T (Db(tK))TIT

Pelb) . (Dy@ )T, (Dyltx)T ()
where

Db(tlc) = [ASi(t), -+, ASp(t:)]
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Dg(tr) = S(tr)®Im
Sp(ty) = diag aglb(;k)’__.,asazzi?)]
S(te) = [s1(tx), -, sn(te)) ®[1,5] (8)

and ® denotes the Kronecker product

The derivatives of R.(¥) with respect to b and 8
are all equal to zero, and the derivative with respect to
the noise variance 7 is simply

OR:(¥) _
“on - (9)

Substituting (7) and (9) in (5) we get the following
expressions for the elements of the FIM,

Fpg = ’A%-f‘{‘
Fnb = 0
Fg = 0
K

Fop = 23 RelDE()Dp(0)

9 K
Fp = EERC[D E (te) Dy(tr)]

9 K
Fgg = -,;kZ_jRe[DS’(tk)Do(tk)] (10)

Let us define the following N-by-N matrices that
summarize the temporal characteristics of the sources.

K

(R)at = Y salts)s] (ts)
k_

B = 3 onttn) 2100
k..

(Rp)t = "’%59"—)6—3#‘—) (11)
k=1 np y

Note that

Dg (t:)Dp(ts) = [SH(t)S) @ I (12)
It follows that

F”=%Re{(R~®[_lj {D@IM} (13)

where the source correlation matrix R is defined in (11).
In a similar fashion we can show that
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AP A x R}, AYAx R}p
2 . .
Fpp = ;Re :
AHAX Rpp

(14)
where X denotes the Hadamard product and R, is
defined in (11). We can also show that

AR A x Rp,

2

where

GP = (RZ'@’[I‘M»J'I‘M])X(NN@AH) p=1-..P (16)

and rps is a length-M row vector of ones.
Combining the above results we get the following
expression for the FIM

F(¥$) = %Re (17)

ME 0 0 0 0
n
0 (AFA)RY (AFA)R}p G

(AHA)Rpp Gp
H

0 (AFA)Rp,
G G Q

0

where

Q=(w®[13{])®m (18)

We refer to the bound derived in this paper as the
“blind CRB.” To gain some insight into the problem
under consideration we compare the blind CRB to the
bound for array manifold with known functional form
which was derived in [4] and will be referred to as the
“non-blind” CRB.

In the example of Figure 1 we consider a pair of
linear FM chirps (second order polynomial phase sig-
nals). We use an 8 element uniform linear array with
half wavelength spacing. We assume that the number
of samples K is 120. The direction of the first source
is fixed at 0 degrees, while the direction of the second
sources is varied according to the source separation.
We fix the SNR at 0 dB and plot the standard devia-
tion of the frequency rate estimate as a function of the
source separation. The source signals are given by,

n=12 (19)

where f, is the sampling frequency and T' = K/fs
is the duration of the observation interval. &; = 1,

sn(t) = 1270.25¢01,(1=1/T)
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and &; assumes the values {—1,0.8,0.9,0.95} for cases
1, 2, 3, and 4, respectively. In Case 1, each of the
source signals and its derivatives with respect to the
phase parameters are approximately orthogonal to the
other source signal and its derivatives. In this case we
expect a single source performance. The other cases
represent transition from orthogonal sources to nearly
coherent sources. For each case we plot the following
bounds: The bound derived in this paper (blind CRB),
its single source version (single-source blind CRB), the
non-blind CRB and its single source version. In all
cases the single-source blind CRB coincides with the
single source non-blind CRB, indicating that in the sin-
gle source case the assumption of unknown structure of
the array manifold does not cause any degradation in
performance. In the case of approximately orthogo-
nal signals (case 1), all 4 bounds coincide, indicating
that both blind and non-blind bounds predict single
source performance. A similar situation occurs in case
2, where the source signals are neither approximately
orthogonal nor close to coherent. In cases 3 and 4,
however, the sources are nearly coherent, and the two-
source bounds depart from each other and from the
single source bound. In these cases, the assumption
of unknown structure of the array manifold causes sig-
nificant performance degradation relative to the case
where the functional form of the array manifold is per-
fectly known. Furthermore, it is not possible to achieve
single source performance.

3. AN APPROXIMATE ML ALGORITHM

Without loss of generality we can rewrite the signal
model in Eq. (2) in the following way,

x(tg) = AAs(ty) +n(ty) k=1,.-- K (20)
where A is a diagonal matrix with real positive entries
and (A¥A)pn = M. It can be shown that the ML
estimator minimizes the following cost function with
respect to the phase and the array parameters.

L.
]

tr{AA7 AAf:s(tk)sH(tk)}

k=1

2Re tt{AAH i x(tk)sH(tk)} (21)
k=1

As discussed in [4] polynomial phase signals tend to
be orthogonal to each other, unless they are identical
(or nearly identical). In this case K . s())s# (t;) ~
K1, where I is the identity matrix of dimension N.
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Figure 2: RMSE of frequency and frequency rate
vs. SNR. f, = 60 Hz. CRB (solid line), Monte-
Carlo results ("+’)

Using the above approximation we get the following
ML algorithm:

1. Evaluate the following cost function

Ja(by,---, bp)
M K
= E|E,,m(tk)e-:'(htp.+~~,+bptf)|2 (22)

m=1 k=1

2. Identify N local peaks in J;. {5,.1,-- -,5,,,} are the
arguments associated with the n-th peak.

3. Obtain the estimates ofa,,n =1,.-., N as follows:
K . P
b= Sox(t)e ! Dem bt (ag)
k=1

Although the above approximate ML algorithm is
significantly simpler than the exact ML algorithm, it
still requires the identification of N local peaks in the
cost function. To further reduce the computational
complexity we suggest the following algorithm.

1. y(tk)=x(t,,) for k:l,'-',K.

2. Forn=1,-.-,N do the following:
a. Let

{3,.1,~-~,3,.p} = arg max
bh"') P
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M K

E ‘Z Y (L )e~I (Brtut - 40P 2 (24)

m=1 k=1

b. Remove temporarily the n-th source from {y(tx)}
by

. P s
Y(tk) —_— y(tk)e_’ Z':l bnpt,’:
1 K
y() — y(t) - EZY(&)
k=1
. P 3
Y(tr) — y(te)e Lorm Pt (25)
fork=1,---,K

3. Remove permanently the N-th source from {z(tx)}
in a similar fashion to (25).
4 N— N-1.If N >1gotoStep 1.

To demonstrate the performance of the above algo-
rithm we present the results of a simulated experiment
and compare them with the CRB. In this experiment
we used the scenario of Section 2 with &, = 0.7. We
fixed the source separation at 5 degrees, and consid-
ered SNR values of -10, -5, 0, and 5 dB. At each SNR
value we performed 100 Monte-Carlo runs. The results
are shown in Figure 2, where we plot the RMS errors
of the phase parameter estimates as a function of the
SNR. The phase parameters are represented by the ini-
tial frequency of the chirp, and its frequency rate. At
the SNR values under consideration there is a good
agreement with the CRB.
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