THE WATSON SPEECH RECOGNITION ENGINE

R. Douglas Sharp, Enrico Bocchieri, Cecilia Castillo,
S. Parthasarathy, Chris Rath, Michael Riley, James Rowland

AT&T Laboratories
600 Mountain Avenue,
Murray Hill, NJ 07974

Abstract

In 1995, AT&T Research (then within Bell Labs) began work
on a software-only automated speech recognition system named
Watson™. The goal was ambitious; Watson was to serve as a
single code base supporting applications ranging from PC-
desktop command and control through to scaleable telephony
interactive voice services. Furthermore, the software was to
be the new code base for the research group, allowing fast
deployment of new algorithmic advances from the lab into the
field. A set of C++ objects has been developed which support
these objectives. This paper gives an overview of the Watson
Automatic Speech Recognizer software architecture, describes
the algorithms employed, and provides performance numbers
for some sample tasks.

Introduction

Watson is a software product that supports speech recognition,
text to speech synthesis, and speaker verification. It is licensed
to applications developers by AT&T’s Advanced Speech
Products Group. The functionality in the initial versions of the
Watson ASR product was obtained through bringing together
the best features from a number of existing research ASR
systems. The first such system was the Bell Labs Automatic
Speech Recognizer (BLASR), which implements an efficient
Viterbi beam-search for large vocabularies and supports
context-dependent modeling. Another was the OneBLASR
recognizer’, which was used for recognition experiments on the
ARPA North American Business task®.

For the Watson recognizer to bring value to systems ranging
from a single processor PC through to scaleable platforms
supporting high-end telephone network applications, the
system had to be based upon a general, extensible, and object-
oriented architecture. The object-oriented discipline of creating
an encapsulation between interface and implementation was
required in order that the features required for one application
interacted minimally with those required for another. For
example, the Intel-PC version of Watson is the only one that
need be concerned with the details of the Intel MMX™
instruction set. On the other hand, some functions of Watson
are used in many different ways. For example, the code which
implements the Viterbi decoding algorithm supports training,
real-time small-vocabulary recognition, large-vocabulary
recognition, and speaker verification, each of which require
specific features from the decoder which the other applications
do not. Watson avoids the complexity associated with this

Copyright 1997 |IEEE

profusion of features by making use of a simple base class for
each major object in the system along with a specialized derived
class per specific application of the object.

Watson Software Architecture Overview

The Watson ASR Engine is comprised of a set of C++ objects
which collaborate to perform speech recognition and speaker
verification. In the following diagram, the boxes represent the
major subsystems, and the ovals represent the data objects
which flow between them.,

Speaker .
Manager Verifier

Speaker
Profile

Feature
Frame
Feature
Frame

Result

Decoder

Model

NetwkFsm

Grammar
Factory

The FrontEnd subsystem accepts audio samples and produces
FeatureFrames along with FrontEndEvents including
UtteranceStart and UlteranceEnd. The GrammarFactory
subsystem manages the Grammars loaded by an application and
constructs the composite NetworkFsm used by the Decoder from
the active rules of all loaded grammars. The Decoder subsystem
performs a frame-synchronous Viterbi beam search on a
NetworkFsm, consumes FeatureFrames, and returns the set of
maximum likelihood paths subject to phone duration
constraints. Partial path information required for stopping
prompt playback on barge-in can also be returned.

4065

The Pronounce subsystem maintains a current Phonetic
Alphabet and provides dynamic translation from orthographic
text strings to subword transcriptions.

The SpeakerManager subsystem maintains a set of
SpeakerProfiles in memory and/or on disk, manages
SpeakerProfiles for all known speakers and keeps track of the
current speaker name and group. The Verifier subsystem is
responsible for verifying that a set of utterances comes from a
particular speaker.

Finally, the Controller subsystem coordinates the activities of
the other subsystems and communicates with the application
through the standard Microsoft Speech application programmer
interface’ (SAPI). Applications also have access to advanced
capabilities beyond those covered in SAPI (such as speaker
verification) through AT&T’s Advanced Speech API (ASAPD)’,
a platform-independent API which extends SAPL

Overview of the Algorithms

Front-end

The front-end can be configured to generate either Mel filter-
bank’ or LPC cepstrum®. Mel is currently used for microphone
speech, while LPC is used for telephone. In either case,
twelve cepstral coefficients as well as normalized energy are
produced. With delta and delta-delta terms, 39 dimensional
feature vectors are produced with a ten millisecond frame
advance. Cepstral-mean subtraction (CMS)’ is performed in
order to make the front-end robust to channel and microphone
variations. Silence and speech segments are identified using an
energy-based heuristic and are normalized separately using
leaky-integration. For high accuracy in telephone applications
where limited adaptation data is available per call, the leaky
algorithm supports a time-varying integration coefficient,
allowing rapid initial adaptation based on a small initial look-
ahead, with a longer effective look-behind as the number of
frames available in the past increases. In order to preserve real-
time response, the look-ahead buffer is collapsed when
sufficient frames are available in look-behind, which allows the
decoder to catch up if running in faster than real time.

Grammars

The Watson engine accepts either finite state networks® or
grammars in Microsoft SGF format’. While SGF can be used to
specify general recursive grammars, Watson supports only
right-recursion. SGF grammars are compiled at load time into
finite state networks, which are also used as the Watson SAPI
native grammar format.

Decoding Network

The Watson network representation allows any finite-state
model of context to be used in a very general class of decoding
cascades, without requiring specialized decoders or full network
expansion. The approach is based on two fundamental
ingredients: a simple generalization, weighted finite-state
transducers, of existing network models, and on-demand
composition, a novel “lazy” execution technique for network

Copyright 1997 |IEEE

combination. Weighted finite-state transducers generalize
weighted probabilistic automata (e.g., Hidden Markov models
or n-gram language models) by replacing the single label of an
arc by a pair I:0 of an input symbol I and an output symbol O.
Tranducers permit us to explicitly represent mappings between
representational levels. For example, a lexicon maps between
words and their phonetic pronunciations and is readily encoded
in a transducer. More interestingly, we can represent the
mapping between context-independent phones and their
appropriate context-dependent (e.g., triphonic) expansion
directly as a transducer, without requiring specialized context-
dependency code in the recognizer. Any finite-state language
model (e.g, n-grams) can be trivially represented as an identity
transducer restricted to the finite-state language.

Appropriate versions of the above transducers can then be
composed, yielding a transducer from context-dependent models
to word sequences that is guaranteed to represent all the
required cross-word context dependencies. The crucial
algorithmic advantage of transducer composition is that it can
be easily computed on-the-fly. We developed a fully general
lazy composition algorithm, which creates on demand, and
optionally saves for reuse, just those states and arcs of the
composed transducer that are required in a particular decoding
run, for instance, those required for paths within the given beam
width from the best path.

We can thus use the lazy composition algorithm as a subroutine
in a standard Viterbi decoder to combine on-the-fly a language
model, a muiti-pronunciation lexicon with corpus-derived
pronunciation probabilities, and a context-dependency
transducer. The external interface to composed transducers does
not distinguish between lazy and pre-computed compositions, so
the decoder algorithm is the same as for an explicit network.

In recognition experiments with the DARPA Resource
Management (RM), Airline Travel Information Services
(ATIS), and North American Business News (NAB), we have
found that only 1-2% of the full network needs to be expanded
for a particular utterance. This significant savings in memory
comes with little cost in time (<5% total CPU recognition
time)®,’.

Search

Watson performs a fairly standard Viterbi beam-search'®!. At
each frame only those paths are extended for which the
difference between their score and the best score is less than a
given threshold. One slight twist in the Watson implementation
is the way in which multiple (n-best) paths are optimally
maintained in the decoder'’. Just as a single token per state in
the decoding network is sufficient to maintain the information
required to optimally return the best Viterbi path, so n tokens
per state are sufficient to maintain n-best paths optimally, if
each token can be guaranteed to correspond to a significantly
different path'>. To allow paths to be distinguished from one
another with a single pointer comparison, a hash table is
maintained where a path through the network corresponds to a
series of hash table entries, and each entry contains a pair of
values. The first is the symbol corresponding to the most recent

4066

significant label in the path, and the second is a pointer to the
preceding table entry on the path. This is illustrated in the
following diagram".

Symbol Table Hash Table
W1 The P1 W1 NIL
w2 Quick P2 W2 P1
W3 Slow P3 W3 P1
w4 Red P4 w4 P2
W6 Fox P5 W4 P3
P6 w6 P4

The illustrative tables above currently contain two paths
through the network, corresponding to “The quick red fox” and
“The slow red”, along with other partial paths. Using such a
table, maintaining the sorted list of n-best tokens at each state
in the network given the previous lists of the m states which
feed the current state takes only O(n*m) operations. Since most
of the token merging is done within the HMM states and these
states have only a self-loop and a transition to the next state, in
practice we find that the Watson search has complexity O(n) for
n-best candidates. Adding a new path into the hash table when
crossing a significant word boundary (or verifying that this is a
new path) takes roughly constant time (based on hashing with
chaining).

Models

Units which are supported in the Watson recognizer range from
whole-word context-independent digit models through to
context dependent head-body-tail subword models. This allows
a great deal of flexibility in the trade-off made between
memory, speed, and accuracy. Continuous density HMM’s are
used to represent each unit. For each state of an HMM model,
the spectral observation density is represented by a weighted
mixture of multivariate normal density functions. General tying
is supported at the mixture or state level. Each unit can have
an associated duration penalty and insertion penalty.

Speaker-verification

Watson supports text-dependent speaker verification using
digit-string or general phrase passwords. The block diagram of
the verification system is shown below.

Copyright 1997 |IEEE

A user makes an identity claim by speaking a digit string or a
phrase unique to that user. The input utterance is recognized
and segmented into a sequence of units (either digits or phones)
by the Watson speaker-independent recognizer. The label of the
recognized utterance functions as an identity claim and is used
to retricve a set of speaker-dependent models (created at
enrollment), which is then transmitted to the verifier along
with the segmented utterance. The verifier scores the password
utterance using the user’s model for the phrase as well as a
speaker background model "', The test statistic is the ratio of
the target model score and the background model score.

The system requires limited enrollment data (usually a few
repetitions of the password phrase) in a single session and yet
provides robust performance under a variety of test conditions
that are mismatched with training. This is achieved by using
likelihood ratio scoring and also by performing ongoing
adaptation of speaker dependent models and thresholds using
all accepted in-service verification utterances.

Performance

The following results are for speaker-independent ASR on a
variety of sample tasks. The real time factor is the processing
time (on a 100Mhz Pentium) divided by duration of the
recognized utterance.

Task Accuracy Real-Time
Microphone Digits'® 95.3/98.7 0.23
Microphone voice-labels'’ 87.1 0.25
Telephone Digits™ 86.0 / 98.5 0.16
Telephone easy NJ towns "~ 90.4 1.66
Telephone hard NJ towns® 67.5 1.65

Summary

From the conception of the Watson ASR system in January
1995 until the present time, we have made great progress
towards our vision of a single stream of sofiware which would
serve as a portable, scaleable basis for interactive voice services
in a variety of target architectures, and at the same time serve as
the software base for ASR research within AT&T labs .

Interactive voice interfaces will become a ubiquitous feature
of future applications, whether accessed over the telephone
network, the Internet, or running on a local PC. By virtue of
its modular, scaleable architecture and leading-edge
technology, the Watson ASR engine has been designed to
address each of these application domains. Ongoing
algorithmic improvements from AT&T labs will be made
available in the Watson product with the lowest possible
delay due to the shared Watson code base.

References

' E. Giachin, C.-H. Lee, R. Pieraccini, L.R. Rabiner,
"Implementation aspects of large vocabulary recognition based
on intraword and interword phonetic units," CSELT Technical
Reports - Vol. XIX - No. 1 - February 1991.

4067

2 Michael Riley, Fernando Pereira Emerald Chung, "Lazy
Transducer Composition: a Flexible Method for On-the-Fly
Expansion of Context-Dependent Grammar Networks"
Snowbird '95: Snowbird, Utah. Dec 1995."Lazy Transducer
Composition: a Flexible Method for On-the-Fly Expansion of
Context-Dependent Grammar Networks" Snowbird '95:
Snowbird, Utah. Dec 1995.

* Microsoft Corporation, "Speech API Developers Guide,
Windows™ 95 Edition," Version 1.0 ©1995 Microsoft
Corporation.

4 AT&T Corporation, "Advanced Speech APl Developers
Guide", Version 1.0 ©1996 AT&T Corporation.

> Steven B. Davis, Paul Mermelstein, "Comparison of
Parametric Representations for Monosyllabic Word Recognition
in Continuously Spoken Sentances," IEEE Transactions on
Acoustics, Speech, and Signal Processing, Vol. ASSP-28, No.4,
August 1980.

® B. S. Atal, Suzanne L. Hanauer, "Speech Analysis and
Synthesis by Linear Prediction of the Speech Wave," The
Journal of the Acoustical Society of America, 21 April 1971.

T F. Liu, R. Stern, X. Huang, A. Acero, “Efficient Cepstral
Normalization for Robust Speech Recognition,” Proceedings of
ARPA Human Language Technology Workshop, March 1993.

¥ Pereira Fernando, Michael Riley, Richard Sproat, "Weighted
Rational Transductions and their Application to Human
Language Processing,”, ARPA Workshop on Human Language
Technology, Mar 1994, page 249,

® M. Mohri, F. Pereira, M. Riley, "Weighted Automata in Text
and Speech Processing," ECAI 96: 12th European Conference
on Artificial Imelligence, August 1996, Budapest, Hungary.

B, Lowerre, D. R. Reddy, "The HARPY speech understanding
system," Trends in Speech Recognition (W. Lee, ed.) Prentice-
Hall Inc., New York, pp.340-346.

! Optimally subject to the Viterbi beam heuristic, that is.

"2 Significance is determined by the task at hand. For example,
if only the word level transcription is desired, then each word
can be held significant. If only certain words are significant,
then the others can be made equivalent for the purposes of the
n-best algorithm.

¥ Guy L. Steele Jr, "Common LISP : The Language," Digital
Press, 1980.

4 AE. Rosenberg, S. Parthasarathy, "Speaker background
models for connected digit password speaker verification,”
ICASSP96.

15 S. Parthasarathy, A.E. Rosenberg, "General phrase speaker
verification using sub-word background models and likelihood-
ratio scoring” ICSLP96.

'® String and digit forced-choice accuracy obtained on a data set
of 299 1, 7, and 10 digit strings collected from NCR customers
in their homes. Average string length is 4.36 digits. The
recognition grammar allowed any number of digits to be
recognized.

17 11 this subword recognition task, NCR customers spoke voice-
dialing sentences such as “Call Jim at the office”. Results are
obtained on 149 test sentences run against a recognition
grammar containing 182 distinct phrases.

'® String and digit forced-choice obtained on a data set of 651
10, 14 and 15 digit strings collected from calls made over the
AT&T network from mall payphones. The average string length

Copyright 1997 |IEEE

is 13.0 digits. The recognition grammar allowed any number of
digits to be recognized.

¥ In this subword recognition task, callers spoke words drawn
from a list of 1000 New Jersey town names over the telephone.
Utterances of the 100 names judged to be the least confusable
and the 100 names judged to be the most confusable were
recognized against a vocabulary oontaining all 1000 town
names.

4068

