This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSINGOL. 1, NO. 1, OCTOBER 2010 1

A Probabillistic Interaction Model for
Multipitch Tracking With Factorial Hidden

Markov Models

Michael Wohlmayr,Sudent Member, |EEE,
Michael Stark,Sudent Member, |IEEE, and Franz Pernkopfylember, |IEEE

Abstract

We present a simple and efficient feature modeling approachracking the pitch of two si-
multaneously active speakers. We model the spectrogratarésaof single speakers using Gaussian
mixture models in combination with the minimum descriptiemgth model selection criterion. To
obtain a probabilistic representation for the speech mixspectrogram features of both speakers, we
employ the mixture maximization model (MIXMAX) and, as aneahative, a linear interaction model.
A factorial hidden Markov model is applied for tracking pitover time. This statistical model can
be used for applications beyond speech, whenever the détitanabetween individual sources can be
represented as MIXMAX or linear model. For tracking, we uke toopy max-sum algorithm, and
provide empirical comparisons to exact methods. Furtheemae discuss a scheduling mechanism of
loopy belief propagation for online tracking. We demonigtraxperimental results using Mocha-TIMIT
as well as data from the speech separation challenge prbbigl€€ooke et al. We show the excellent
performance of the proposed method in comparison to a welvkrmultipitch tracking algorithm based
on correlogram features. Using speaker dependent motlelproposed method improves the accuracy
of correct speaker assignment, which is important for sirajlannel speech separation. In particular, we

are able to reduce the overall tracking error by 51% reldtivehe speaker dependent case. Moreover,
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we use the estimated pitch trajectories to perform singksnel source separation, and demonstrate the

beneficial effect of correct speaker assignment on spequra@on performance.

Index Terms

Speech analysis, multipitch tracking, factorial hiddenrkéa model (FHMM), mixture maximiza-

tion, Gaussian mixture model (GMM).

. INTRODUCTION

Estimation and tracking of pitch is an important and ongoggearch area in speech and audio
signal processing over the last decati&@peech applications based on single pitch estimates
involve speech coding [4], prosody analysis [5], speakentification [6], speech enhancement
for hearing aids [7], and speech recognition for tonal latgs [8]. Moreover, pitch may serve
deaf people as an additional cue for lipreading [9]. Soméefliest performing algorithms for
single pitch estimation are RAPT [2] and YIN [10]. RAPT extima set of candidate peaks from
the normalized autocorrelation function (NACF) and tratties most likely pitch trajectory using
the Viterbi algorithm. YIN proposes a series of steps to rfyodnd improve the autocorrelation
method used for pitch estimation. Likewise, many other @llgms are based on extracting
local maxima from short-time periodicity measures suchhesNACF, the average magnitude
difference function (AMDF), or modifications thereof. Far aarly comparison of single pitch
estimation methods, we refer the interested reader to [3].

This paper is concerned with estimation of pitch in the mdrallenging scenario of multiple
concurrent speakers. Applications of multipitch trackafgpeech involve single-channel speech
separation (SCSS) [11], [12] and co-channel speaker iiEtion [13]. Beyond speech, a
prominent application of multipitch tracking is the autdmdaranscription of music (see [14]
and references therein). Methods for multipitch trackifigmeech include [1], [15], [16], [17]

and recently [18]. Since we compare our approach to the rdetiidVu et al. [1], we shortly

!Pitch refers to a perceptual quality, i.e. the frequency of a pimassid perceived with the same tone as the given signal
segment under investigation. In contrast to this, tivedamental frequency fo refers to the inverse of the smallest period
of a quasi-periodic signal. Although the fundamental festry correlates well with the perceived pitch of a signaltaie
perceptual phenomena such as pitch doubling/halving findxpianatory support by,. Hence, the term pitch is mostly used

in psychoacoustics. Nevertheless, we use the term pitdhisrpaper since it is more consistent with previous litexa{d], [2],

[3].
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summarize their method in the following: It is based on thé@am model of pitch perception
[19], upon which several improvements are introduced ttdy@eprobabilistic representation of
the periodicities in the signal. First, the input signal scdmposed into 128 subbands using
a gammatone filterbank, and the amplitude envelope is egttdor high frequency channels
(center frequency above 800Hz). The NACF is then computedrames for every channel.
Subsequently, a scheme is employed to discard channelsevgeo®dicity information is likely
to be unreliable due to noise. For selecting a low frequert@noel, the maximum peak at
nonzero lags must exceed a threshold. For high frequenaynels the periodicity information
must be consistent with the autocorrelation computed ongaldime frame. If a high frequency
channel is selected, an additional peak selection rousnemployed. The final set of peaks
selected from various channels serves as a basis to creabdabpistic representation of zero,
one or two pitch periodicity values at each time frame. Inehrthe method calculates the
likelihood of pitch periodicities under the given obseiwatfor the hypothesis of one and two
pitch values. Semi-continuous pitch trajectories are thietained by tracking these likelihoods
using a hidden Markov model (HMM). Although this model prdes an excellent performance
in terms of accuracy, it is not possible to correctly link legitch estimate to its source speaker.
In this paper, we aim to follow a quite different approach rimultiple pitch tracking which is
solely based on a statistical model. In contrast to audib@yed approaches such as [1], explicit
heuristics such as peak or channel selection are hiddereist#tistical model. In particular, the
proposed system for multipitch tracking consists of sduwa@dules: i) The spectrogram of each
single speaker is modelled using Gaussian mixture modeldM&, whereas the minimum
description length (MDL) [20] criterion is applied to find eéhoptimal number of Gaussian
components. Training of GMMs can be based on a large set fefrelift speakers, which results
in a speaker independent model. On the other hand, a priawledlge of speaker specific
characteristics can be incorporated to obtain a speakendept model. As we will show in the
experimental section, speaker dependent models havevhatade to allow a correct assignment
of pitch trajectories to their corresponding speakersctvig an important cue for single-channel
speech separation. ii) Two different interaction modelbe-MIXMAX model [21] and a linear

model — are explored to obtain a probabilistic represesratif the observed speech mixture of
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both speakers.iii) The statistical observation model of a speech mixtigahien used within

the framework of factorial hidden Markov models (FHMMs) [2%hich provide the natural

means for tracking the pitch trajectories of both speakeriVIMs enable the tracking of the
states of multiple hidden Markov processes evolving in Ipgraver time, where the available
observations are considered as a joint effect of all singheklg processes. The explicit factorial
nature among the various Markov chains allows the use of raffigent inference algorithms
compared to an equivalent HMM. We use the loopy max-sum ghgorto obtain approximate

solutions to the inference problem, and discuss a schepatiechanism for online tracking.
Furthermore, we empirically compare the results to exdetremce.

The paper is organized as follows: Section Il introduces RtEMor multipitch tracking and
establishes the terminology for subsequent sectionsioBdtt presents the MIXMAX as well as
the linear interaction model, and details the speaker muoaktd on GMMs. Section IV describes
the belief propagation methods used for tracking. Sectiodis¢usses the experimental setup
and performance results on two different databases, nametha-TIMIT [23] and the GRID
corpus [24]. Section VI presents a simple approach to parfSCSS based on the estimated

pitch trajectories, and demonstrates performance regtilally, section VIl concludes.

Il. FACTORIAL HIDDEN MARKOV MODELS

Factorial hidden Markov models enable the tracking of thgestof multiple Markov processes
evolving in parallel over time, where the available obsBores are considered as a joint effect of
all single Markov processes. For simplicity, we presentdase of two Markov chains depicted
as the factor graph in Fig. 1. The hidden state random vasaaie denoted by,(f), wherek
indicates the Markov chain artcthe time frame fromil to 7'. Similarly, realizations of observed
random variables at are collected in aD-dimensional vectogy®) ¢ RP 3 Eachx,(f) represents
a discrete random variable with state spa€eand cardinality| X |. The edges between nodes
indicate a conditional dependency between random vasaldpecifically, the dependency of
hidden variables between two consecutive time instancegfised for each Markov chain by

the transition probability)(x,gt)\x,(f_l)). The dependency of the observed variabie on hidden

2Note that our approach can in general be extended to moretwmspeakers.

3Note that boldface symbols denote vectors throughout theustipt.
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Fig. 1. A factorial HMM shown as a factor graph [25]. Factordes are depicted as shaded rectangles together with their

functional description. Hidden variable nodes are showoitates. Here, observed variablg$? are absorbed into factor nodes.

varlable3r andxg is defined by the observation probabiljigy \:cl ,:c2 ) Finally, the prior
distribution of the hidden variables in every chain is denlobyp(:ck, ) Denoting the whole
sequence of variables, i.&:(} = |J_ 1{x1 ,x2 "} and{y®} = UL, ¥, the joint distribution
of all variables is given by

p{z"} {y"}) = p({zHp({y " H{a"}) =

2

T T
IT (o) [ o2 H 2, 2.
t=2 t=1

k=1
The number of possible hidden states per time framgXig. As pointed out in [22], this

could also be accomplished by an ordinary HMM. The main ckffiee, however, is the constraint
placed upon the transition structure. While an HMM wii#fj? states would allow anyX |? x| X |2
transition matrix between two hidden states, the FHMM idrigted to two|X| x | X| transition
matrices.

As in most previous work for multipitch tracking [1], [26]27], we restrict ourselves to two
simultaneously speaking subjects, i.e. two Markov chaizch Markov chain models the pitch
trajectory of one speaker, hence the hidden varia:(jfedenotes the pitch state of speakeat
time ¢. Each hidden variable ha&'| = 170 states, where state value '1’ refers to 'no pitch’ (i.e.
unvoiced or silent), and state values '2’-'170’ encode atiint pitch frequencies ranging from

80 to 500Hz. Specifically, the pitch value corresponding to state {2,...,170} is f, =

30+:v
where the sampling ratg, = 16kHz. Similar to [1], this results in a nonuniform quantizati

of the pitch interval, where low pitch values have a more fir@ned resolution than high pitch

values.
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The observation probabilitiggy |z, 2) are obtained by using speaker interaction models,
as described in the next section. The construction of Mansip(x,gt)|x,gt_1)) and priorSp(x,(j))

will be described in section V-B.

Ill. THE SPEAKER INTERACTION MODEL

At each time frame, the FHMM models the feature vectgf? extracted from the mixture
signal by the observation probability(y®|z\”, 2{). Recently, we modelled the spectrogram
features for each pitch pair with one individual GMM [28]. tims work, however, the design of
p(y(t)|x§t), xgt)) is guided by the insight that feature vectors based on thenihalg spectrogram
or log-spectrogram can be approximated byimteraction model f: y® ~ f(s\”, s{), where
s§t> is the corresponding feature vector resulting from a sisgkaker. Thus we can approximate
the desired observation probability using statistical eleaf single speakers. In the following,

we provide details on two specific interaction models.

A. The Mixture-Maximization Model

The mixture-maximization (MIXMAX) model was originally pposed in [21] for noise robust
speech recognition. Since then, it has been used for sinadtes recognition of cochannel
speech [29], speech enhancement [30], SCSS [31], speadstifichtion [32] and joint single-
channel speech separation and recognition [33]. It is baseithe insight that the log-spectrum
of two speakers can be approximated by their elementwisénmuaw [21]. Specifically, for each
time instantt,

y" ~ max(s{”, s{), (1)

(t

wheresi) is the log-spectrum of speakér The underlying assumption is the sparse nature of
speech in time-frequency representations, i.e. eachcpkatitime-frequency cell of a mixed-
speech spectrogram is dominated by a single speaker — thadidswith high probability. This
leads to the notion of binary masks in computational augismene analysis (CASA) [34] and
SCSS [31]. In [35], it is shown that (1) is a nonlinear minimunean square error (MMSE)
estimator of the mixture log-spectrum assuming that thesphaf both sources has uniform
distribution. We might think ofy® being generated by the stochastic model shown in Fig. 2.

For a pitch value related to sta’tét), speaker generates a Iog-spectrumﬁf), that is randomly

July 29, 2010 DRAFT

Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.o



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSINGOL. 1, NO. 1, OCTOBER 2010 7

p(y®]si” 55"

Fig. 2. Pitch dependent generation of the mixture log-spety . Both speakers produce a Iog-spectrs}ﬁ in dependency
on pitch statez:z(.t). The observed log-spectrug® of the speech mixture is approximated by the elementwiseimar of

both single speaker log-spectra.

drawn from thesingle speaker model p(s§t>|x§t>). Both log-spectra are then combined via the el-
ementwise maximum operator to form the observable logtapea®). Thus,p(y®|s{”, s =
b (y(t) max(s!”, sg))), whered(-) denotes the Dirac delta.

In general, we obtain the observation probability by maagaing over the unknown single

speaker log-spectra:

p(y®al”, 2y / / st 88 p(s |2y )p(sy |t )ds\ sy @)

For the sake of brevity, we omit the explicit dependence ofdcem variables ort, where
appropriate. We use GMMs to model the state-conditiongjlsispeaker spectra of each speaker,

i € {1,2}, according to
Mi,cvi

p(3i|$i) = p(si|@i7xi) = Z CYZ;,L.N (Sz|9me) ) (3)
m=1

where M; ., > 1 is the number of mixture components, anfi, corresponds to the weight of

each component = 1,..., M;,,. These weights are constrained to be positivg, > 0, and
ML',‘LL

m=1 z T4

O, = {a, 0" } ", where”, = = {p,, X }. We assume that the covariance matrices

4,240

= 1. The correspondlng GMM for pitch; is fully specified by the parameter set

37, are diagonal.

Given a set ofV; log-spectra from speakerS; = {sf.”, s sENi)}, together with corresponding
reference pitch Iabels{,rgl), - xENi)} we can easily learn a speaker dependent GMM,;|©; ..,)
for each pitch state;, and each speakeér using the EM algorithm [36]. Accordingly, we have
to determinel70 GMMs for each speaker, i.e. one GMM for each pitch stateFurther, we
use MDL [20], [37] to determine the number of components athe@MM automatically. We

denote the set of training samples for pitch statass;,, = {s\”|z\* = z;}, and|S; .| is the
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size of the set. For each, ,,, we train a range of candidate GMMs with different number of
components, and select the GMM which minimizes

2D+ 1M, ...
MDL (®; ;) = —logp (S;., %

O,.,)+ 22 log |Si ],

where the first term denotes the log-likelihood for the ftragndata, i.e.logp (S; .,

©;.) =
Zsiesi,wi log p(si|®;..,), and the second term relates to the complexity of the modél respect
to the available data. Indeed, MDL is a method to find the opitimadeoff between data-fit and
model complexity.

Hence, by introducing speaker specific GMMs in (2) and maigimg over s;, we obtain

the pitch conditional observation probability

Mlzl M2.’L‘2 D
plylenes) = 3 D7 atab,, [T{N @07 @walos) + @(uadrs N (walsil) } . (@)
m=1 n=1 d=1

wherey, gives thed" element ofy, Gm".i gives thed™ element of the corresponding mean and
variance, andb(y|0) = [* N (xz|f)dx denotes the univariate cumulative normal distribution. A

detailed derivation of (4) is provided in the appendix.

B. The Linear Interaction Model

As an alternative to the MIXMAX approach, we can directly mbthe magnitude spectrum
of a speech mixture. Denoting the short-time magnitudetspecof speaker € {1, 2} at time

t by 51@, we approximate the resulting short-time magnitude spetwof the speech mixture by
7O ~ 50 + 50,

To obtain an observation model, we make use of the fact thatsthim of two independent
random variables is modelled by the convolution of theirivittbal probability densities, i.e.
p(g|x1, x2) = p(81]|z1) * p(S2]z2) [38], wherex denotes the convolution operator. Further, the
convolution of two Gaussian densities results again in asGaun, with mean and covariance
matrix being the sum of the individual means and covarignesspectively. Hence\V (g|u: +

W2, X1+ ) = N (81 |p1, 1) * N (82| p2, 2o). This easily extends to GMMs, as the convolution
of two GMMs results in a mixture of all pairwise convolved cooment densities. Similar as

in the MIXMAX model, we train speaker dependent GMMs to motie magnitude spectrum,
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p (5,0, ,,). Then, we obtain the observation model as

Ml,x’l JV[Q,wQ
plilenz) = > > o, o N (Glpy, + 1y, B, +35,,) (5)

m=1 n=1
IV. TRACKING

Given the set of observatioqg/®}, the task of tracking involves searching the sequence of

hidden stategz®}* that maximizes the conditional distribution:

{2V} = arg gg;;p({x(”}|{y(”})- (6)

For HMMs, the exact solution to this problem is found by thée¥hi algorithm. Although an
FHMM could be expressed by an equivalent HMM, more efficieatking algorithms exploit the
explicit factorization into individual Markov chains. Thenction tree algorithm [39] provides an
exact solution for FHMMs. However, its computational coexly increases exponentially with
the number of hidden Markov chains. Several algorithms areed in [22] from the framework
of variational inference to obtain approximate solutionmisthe sake of reduced complexity. The
sum-product algorithm [25] can be derived under a simil#tirsge of variational principles [40],
although more intuitive derivations exist for graphs withdoops. When applied on a graph
with loops, as is the case of FHMMs, the solutions are in ganeot guaranteed to converge
and can only approximate the optimal solution. For a dedadiscussion, we refer the interested
reader to [25], [41], [40].

In this work, we use both the exact junction tree algorithmwa$l as the max-sum algorithm
(a variant of the sum-product algorithm) to solve (6). M@ we propose a message passing
schedule for the max-sum algorithm to enable online tragkin the experiments, we compare

the performance of all presented inference methods in tefrascuracy and computation time.

A. Junction Tree Algorithm

Exact inference on arbitrary graphical models is usuallgoawplished by first transforming
the graphical model into a junction tree, where then belieppgation is performed [41], [42].

For the problem of finding the marginal distribution

pE Ny = > p({z}{y"}), (7)

{z® Pz
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Ghahramani and Jordan [22] provide an exact inference igigorfor FHMMs based on the
junction tree algorithmt.We present the equivalent formulation on the max-sum seqid3]
in Fig. 3% which provides an exact solution to (6). The computatior@hplexity (without
considering the computation pty|z;, z2)) is O(TK|X|K+1), whereK is the number of Markov

chains. ForK = 2, as in our case, tracking is still tractable.

B. Max-Sum Algorithm

The max-sum algorithm is based on passing messages betwees of a graph. Among
various types of graphs, factor graphs [25] have become al@omol to depict the mechanisms
of message passing. Consider again Fig. 1, which shows anMFHI8l factor graph. The
functional dependency of each variable node, for brevitledar, is made explicit by “factor
nodes”, shown as shaded rectangles, i.e. each rectangledenfunctionf({z}) of its adjacent
(i.e. neighboring) variable nodest}. For the max-sum algorithm, each node sends to every
neighbor a vector valued message which is itself a function of the messages it received,
(as well asf({z}), for the case of a factor node). When applied to factor grapitis loops,
message passing results in an iterative procedoopy max-sum algorithm). A message from
variable noder to factor nodef is

pog@) =Y yale), ®)

gen(@)\f
while a message from factgfi to variablez is

proe(r) = max [Inf{2H)+ Y ) |- 9)
{#N\z
ye{\z

Here,n(z) denotes the set of neighbor nodesxofWe re-normalize each messagesuch that
Z‘X e*() = 1. Although this does not influence the final results, it enstine numerical stability

of the message passing scheme [44]. We restrict each nodadoasmaximum of 15 messages

“For two setsA and B, A\B refers to the set difference. The notatidn,, , denotes a nested sum, where one summation
is performed for each element {u;}. I.e. we sum in (7) over all hidden nodes excefft).

SInformally, a semiring is an algebraic structure defined aial, together with two binary operations over elements of
that set. Among other requirements, the binary operationst patisfy the distributive law. As shown in [43], the sunoguct
algorithm can be translated to a semiring involving otheraby operations. In other words, the algorithmic framewfmkthe

problem ’sum of products’ can be translated to obtain anrétgua for the problem 'maximum of sums’.
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Input: y® Vvte {1, .., T}
Output: (:cgt) W) Vte{l,.., T}
Initialization: Compute |Ike|lh00d$9 (y \:cl ,xé’) Vte{l,.., T}
00 (o4, 2) = () +np (o) + b (50t ")
Forward recursion:
for Vi € {2,...,T} do

7(t) (zgwyzg—l) — max, [lnp ($§t>|x(t—1>) 4 A(tD) (xgt—nwg—l)

) almY) — arg max - [lnp (ml Fite )> + =D ( (t_l),:cg_l)ﬂ

ml ,m( — max - [lnp (mz |mt b —i—vft) m() mg 2

— argmax (- Inp (:172 |x )> +7§) ( ()7 (t— ))}
‘Tl 7$2 ) $1 ,:CQ )—i—lnp (y(t |$1 T )
end for
(ng)*yng)j — argmax ) [7( ) (ng) Igrr))]
Backtracking:
for vt € {T, .. 2} do

(t nr ﬁ (t) )
(t e, 51 (t 1)* )
end for

Fig. 3. The junction tree algorithm for a two-chain FHMM on axrsum semiring. This algorithm gives the exact solution
to (6). For the special case of an HMM (i.e. FHMM with a singlafdov chain), this algorithm is equivalent to the well known

Viterbi algorithm.

per edge. Further, each node only re-sends a message tohdareiiit is significantly different

from the previously sent message in terms of the Kullbadkleedivergence. For initialization,
variable nodes send messages with all elements set to ziteo.tie last iteration, we obtain the
maximum a posteriori configuratigrt(z) of each variable node as a function of its incoming

messages:

pi(x) = max p({z}{y}) = Y pgalx (10)

M N\z
{93 gen(x)
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We obtain the approximate solution as the set of individuakima, z* = arg mg?xp*(x) Vo €
{zY}. Neglecting again the computation pfy|z:, =), the computational complexity of this
approach i€ (T K| X |¥), i. e. the complexity of the max-sum algorithm is an order afgmitude
lower than for the junction tree algorithm.

We propose two different scheduling strategies for max-suessage passing. First, we
perform message passing on the FHMM using a complete spee¢hrenutterance at once.
This is suitable for offline processing of recordings. Sel;dior online processing, we parti-
tion the FHMM into overlapping segments of time framé$;, 7, ...}, and perform message
passing on each individual segment exclusively. This cohce illustrated in Fig. 4. Each
segment consists of time frames, and neighboring segments overlapZby S frames, i.e.
T, ={(r—-1DS+1,(r—1)S+2,...(r —1)S+ L}. In stepr, we restrict message passing
to time framest € 7.. Variable nodes in{xgt),xg)u cT. ﬂTT}, as well as factor nodes
connected to them, have already received messages in Weyzetepr — 1. Message passing
is continued with those messages, thus enabling informdkiov from left to right. Similar to
the concept of smoothing in e.g. Kalman filters, we wish tarporate information from future
observations at least! time frames ahead. Thus, when message passing has finiststepin
7 (i.e. each node has sent a maximum of 15 messages per edgajattimum probability
configuration of all variable nodes up to time frarfie— 1)S + L — H is evaluated, wheré/
is the lower bound on the smoothing lag. Throughout the exprts, we set parameters to
L=10,S=4andH = 2.

V. EXPERIMENTAL RESULTS

TABLE |
LABELS OF SPEAKERS AND FILENAMES USED FOR TESTING ON GRID DABASE.

FE1 | speaker 18 ’lwixzs’ 'shil4a’ 'prah4s’

FE2 | speaker 20| 'lwwy2a’  ’shil2a’ 'prbusp’

MA1 | speaker 1 | 'pbbvén’ 'sbwozn’  ’prwkzp’

MA2 | speaker 2 | 'lwwm2a’ ’sgai7p’ "priv3n’
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Fig. 4. For online scheduling, message passing is perfoonetbnsecutive segmenfs., 7, 7,41, ... }. In this example, each
segment had, = 2 time frames, and consecutive segments are shifted by 1 time frames. Factor and variable nodes with
black solid lines are involved in message passing on segfhest {1, 2} and 7> = {2, 3}, respectively. Dashed nodes remain
inactive. When all nodes have sent a maximum of 15 messagsspm = 1, message passing is continued on segrienill
nodes depending on time framesdnn 7; = {2} continue with messages received in steg: 1. With a supposed smoothing

lag H = 1 (see text for details), we evaluate after step- 1 the maximum probability configuration of variablestat 1.

TABLE Il
LABELS OF FEMALE AND MALE SPEAKERS USED FOR TRAINING GENDER EPENDENT AND SPEAKER
INDEPENDENT MODELS ON GRID DATABASE.

‘ ‘ speaker

FE |4 7 8 11 15 16 21 22 23 24
MA |3 5 6 9 10 12 13 14 17 19

We evaluate the performance of the proposed MIXMAX and liregeraction model, abbre-
viated as MM and LI, respectively. Both models are combinétth wne of the three presented
tracking methods (max-sum for batch processing, max-sunoritne processing, and method
based on junction tree algorithm, abbreviated as BA, ON, Ahdespectively), giving a total
of six variants. We compare the performance of the proposettiads to the correlogram based
method [1], which we call COR-HMM. This method achieves ahhigccuracy for speech
mixtures in difficult signal conditions, and can be applietihedoc to a given speech mixture,
i.e. no training is required. However, being agnostic toagpe specific information, it does not
facilitate a proper assignment of the estimated pitch toetheir corresponding speakers. In

contrast to this, the proposed methods can incorporaté&kspsepecific information, which helps
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to identify the correct speaker assignment. Hence, thdtiegypitch trajectories are suitable for
their use in SCSS [12]. A simple SCSS experiment based ondtivaated pitch trajectories is
shown in section VI. To allow a proper comparison of our mdthto COR-HMM, we use an
error measure that is invariant to correct speaker assighr@m the other hand, to evaluate the
performance of the proposed methods in terms of succegsfaksr assignment, we propose a

slightly modified error measure. We give details on bothremeasures below.

A. Data

For experimental comparisons, we used two different dateda

1) The Mocha-TIMIT database [23] consists of 460 Engliskenathces from both a male and
a female speaker, sampledlakHz. In addition, laryngograph signals are available for al
recordings, from which the reference pitg§it| was acquired using the RAPT method [2]
together with manual removal of erroneous pitch estimatesanaudible region%.The
speaker dependent GMMs were trained on 400 sentences ehitb, 60 test instances
were obtained by mixing the remaining male and female uit&s at)dB.

2) Two male and two female speakers (abbreviated as MA1, MAREL, FE2, respectively),
were selected from the GRID database [24], and 500 Englistesees were selected per
speaker. For each speaker, 497 sentences were used topeailkes dependent GMMs,
while the remaining three sentences were used for testimggshawn in Table I. Test
mixtures were created for each speaker pair, including sggneder mixtures, resulting
in a total of 54 test mixtures (9 mixtures for each of the 6 &peaairs). In addition
to speaker dependent (SD) GMMs, gender dependent (GD) GMBbfte wained using
speakers listed in Table I, where again 497 utterances ppeaker were used. Moreover,
one set of speaker independent (SI) GMMs was trained usingpabkers in Table II.
As no laryngograph signals are available for this databifwgereference pitch trajectories

were obtained directly from the single speech utterancegyube RAPT method.

B. Experimental Setup

The featuresy® or ¢ of the proposed methods are based on the log-spectrogram or

magnitude spectrogram of the speech mixture, respecti@algn an input signal at sampling rate
6An implementation of the RAPT algorithm is provided by thetdBpic speech processing system (ESPS)_‘igétmethod.
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fs = 16kHz, we compute the spectrogram via the 1024 point FFT, usikiggmming window of
length32ms and step size dOms. Next, we obtain each observation vegj6t € R% by taking
the magnitude of spectral bins 2-65, which corresponds teguéncy range up td000Hz.’

Likewise, we obtainy® = log 4.

Both transition matrices of the FHMM are obtained by coumptime transitions of the reference
pitch values from single speaker recordings in the trairsagg Additionally, we apply Laplace
smoothing on both transition matricé®rior distributionSp(x,(j)) are obtained likewise. Again,
these priors and transitions are obtained in a SD, GD and shlida using the training data
as proposed for the corresponding GMMs. Remarkably, werebdeduring the experiments
that performance results are consistently better if thestteons matrices remain unnormalized,
i.e. when usingp(z\”, 2™ instead ofp(z\”|2'""). Similar effects on performance results
are observed with(z" |z/~"), where the additional tuning parameter- 2. Throughout the
experiments, however, we use unnormalized transitionsalSgy dependent GMMs are trained
on both databases, as described in section IlI-A and llI-Breédver, gender dependent and
speaker independent experiments are performed on the G&Hbake. For training the GMMs

with MDL, we restricted the maximal number of components G&tM to 20.

C. Performance Measure

For every test instance, each method estimates two pitgdrctoaies, fél)[t] and f(§2) [t]. To
compare the performance of the proposed methods to COR-HWMAMuse the error measure
proposed in [1]:£;; denotes the percentage of time frames whigsitch points are misclassified
as j pitch points, i.e.F;; means the percentage of frames with two pitch values esttmat
whereas only one pitch point is present. For each of the tferemce pitch trajectories[t]

and f2[t], the corresponding pitch frequency deviation is defined as

7k i
| RV - £ T
AfD[t] = min 5
k fo'lt]
i.e. at each time instance, the closest of the two estimatel points is assigned to a reference

)

pitch trajectory. The gross detection error rdig,..s iS the percentage of time frames where

"This covers the most relevant frequency range, while keplie model complexity low.

8Laplace smoothing amounts to the initialization of eachmelet of the transition matrix with count one, i.e. adding phier

information that each transition was observed at least.oflkeis smoothes the transition probabilities.
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the frequency deviation\ fV[t] is larger than 20% for one or both referenc;%@. The fine

detection erroz"

Fine

is the average frequency deviation in percent at time frantesre A f()[t]
is smaller than 20%. The overall errdy..;, is defined as the sum of all error terfh& 1 =
Eo1 + Eoz + Evg + Evg + By + Eo1 + EGross + Erine, Where Epj,. = ESZL@ + El(wzi)ne-
To evaluate the performance in terms of successful speakegrament, we propose a slightly
modified error measure. First, each of the two estimatedh pitgectories is assigned to a ground
truth trajectory, £ [t] or f{?[t]. From the two possible assignment&” — £V, f12 — £2)y
or (f{ — @ 2 _, £y the one is chosen for which the overall quadratic error ialkst.
Note that this assignment is not done for each individuaktiname, but for the global pitch

trajectory. Next, we define thgpeaker assigned pitch frequency deviation as
A=)
1o 1t

where foi) [t] denotes the reference chosen fé’? [t]. For each reference trajectory, we define the

AfOt

)

corresponding permutation errérs,_ . [t] to be one at time frames where the voicing decision
for both estimates is correct, but the pitch frequency dinaexceeds 20%, ang[t] is within

the 20% error bound of the other reference pitch. This irtd&a permutation of pitch estimates
due to incorrect speaker assignment. The overall perrontatiror ratef»..,,, is the percentage
of time frames where eithek}, . [t] or E%_. . [t] is one. Next, we define for each reference
trajectory the corresponding gross erigf, .. [t] to be one at time frames where the voicing
decision is correct, but the pitch frequency deviation exdse20% and no permutation error
was detected. This indicates inaccurate pitch measursnreiépendent of permutation errors.
Again, the overall gross error rafé;, ., is the percentage of time frames where eitﬁé]foss[t]

or E?

Gross

[t] is one. This slightly different definition of the gross errate ensures that voicing
errors or permutation errors do not account for an additiomaease in the gross error rate.
The fine detection erroEgzne is the average speaker assigned frequency deviation ieneat
time frames where\ f)[¢] is smaller than 20%. Finally, the overall errdiz ., is the sum of
all error terms:Eroa = Eo1 + Eoa + Evo + Eva + Eag + Eoi + Egross + Erine + Eperm, Where
Epine = ED + E®

Fine Fine"

®Note thatEr.q;, as proposed in [1], can be larger th&00%.
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Fig. 5. Tracking results of speaker dependent MM-JT and GOMA on GRID test mixture on two female speakers ('lwixzs’
and 'lwwy2a’). Top panel: Spectrogram of speech mixturgether with both reference pitch trajectories. Middle palBstimated
pitch trajectories using MM-JT, together with referencéclpitrajectories (black solid lines). Bottom panel: Estiethpitch
trajectories using COR-HMM, together with reference pitcdjectories (black solid lines).

D. Results on GRID Database

Table Il summarizes the performance of the proposed MM-&thwd on the GRID database
in terms of E; for all three training scenarios (SD, GD and Sl). For congmarj Table IV
shows Er.,; of COR-HMM on GRID. This compares the accuracy of the prodosiV-JT
method to the baseline algorithm COR-HMM, independent ofext speaker assignment. Both
tables show that the main contributors ky.;,, are F»; and Eg,..;. The overall accuracy of
MM-JT degrades when using GD or Sl instead of SD models, hew@y,,,; is still lower than
for COR-HMM.

TABLE 11l
RESULTS FOR MM-JT ON GRID DATABASE. PERFORMANCE IS MEASUREN TERMS OF Erotq;-

‘ Fo1 ‘ Foo ‘ Fho ‘ Fho ‘ Fao ‘ Fo ‘ Egross

EFrine ‘ Erotal ‘
Mean | 0.94 | 0.01 | 6.33 | 2.40 | 1.72 | 11.83 18.11 3.27 44.63
Sb Std 1.36 | 0.08 | 3.19 | 1.93 | 2.56 | 5.92 717 1.22 15.77
Mean | 1.71 | 0.07 | 5.61 | 2.94 | 2.11 | 15.75 22.01 3.62 53.81
GD Std 1.70 | 0.33 | 3.79 | 3.22 | 2.81 7.78 9.22 1.36 17.92
Mean | 2.43 | 0.06 | 5.44 | 3.45 | 1.96 | 15.29 21.25 3.64 53.50
St Std 2.06 | 0.18 | 3.56 | 2.62 | 2.50 7.36 8.69 1.34 16.94
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TABLE IV
RESULTS FOR COR-HMM ON GRID DATABASE. PERFORMANCE IS MEASWHD IN TERMS OFErotai.

‘ ‘ Eox ‘ Foo ‘ Fho ‘ Fho ‘ Fao ‘ Ea ‘ Egross

EFine ‘ ETotal ‘
Mean | 1.00 | 0.08 | 8.46 | 0.87 | 2.56 | 19.97 27.10 2.81 62.85

Std 1.49 | 0.20 | 3.62 | 1.23 | 3.11 | 7.70 7.85 1.53 14.73

TABLE V
RESULTS FOR MM-JT ON GRID DATABASE. PERFORMANCE IS MEASUREN TERMS OF Eroa1.

‘ Eox ‘ Eos2 ‘ Eqo ‘ E1o ‘ Es ‘ Eo ‘ Ecross

Erine | Erern || Brora |
Mean | 0.94 | 0.01 | 6.33 | 2.40 | 1.72 | 11.83 0.91 2.86 0.51 27.52
sb Std 1.36 | 0.08 | 3.19 | 1.93 | 2.56 | 5.92 1.40 0.80 1.29 10.56
Mean | 1.71 | 0.07 | 5.61 | 2.94 | 2.11 | 15.75 2.10 3.93 3.96 38.17
GD Std 1.70 | 0.33 | 3.79 | 3.22 | 2.81 7.78 1.87 2.24 4.38 12.33
Mean | 2.43 | 0.06 | 544 | 3.45 | 1.96 | 15.29 2.44 4.08 10.95 46.07
S| Std 2.06 | 0.18 | 3.56 | 2.62 | 2.50 | 7.36 2.13 2.32 7.89 13.68

TABLE VI
RESULTS FOR COR-HMM ON GRID DATABASE. PERFORMANCE IS MEASUED IN TERMS OFErotai.

‘ ‘ Eo1 ‘ Eo2 ‘ Eio ‘ Ei2 ‘ E29 ‘ E2 ‘ Egross | Erine | Eperm

‘ ETotal ‘
Mean | 1.00 | 0.08 | 8.46 | 0.87 | 2.56 | 19.97 1.32 3.30 16.28 53.83
Std 1.49 | 0.20 | 3.62 | 1.23 | 3.11 7.70 1.80 2.79 10.12 12.99

To demonstrate the capability of MM-JT in correctly assmgnipitch trajectories to their
corresponding speakers, we compare its performance to IBKR-on GRID using the proposed
error measurer,,; in Table V and VI. Using SD models, we achieve approximatelif the
value of Erye in comparison to COR-HMM. While both methods achieve simdatcomes
for Egross and Er;e, major differences arise ifp,,,, and Ey,. GD or SI models cause a drop
in performance compared to the speaker dependent case.veiowe still outperform COR-
HMM. Here, mostlyE,, and Ep,,,, are the main contributors t8,,,. Using GD models, we
observe a large increase ffp...,, for same-gender scenarios, while for different-gendenades,

Eperm is significantly lower than for COR-HMM. This indicates thereficial influence of SD
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Fig. 6. Erotar of MIXMAX approach using speaker dependent models and rdiffetracking algorithms on GRID. Each box

depicts the mean and standard deviation of a method overt #nigtires of a given speaker pair.

or GD models on correct speaker assignment. Fig. 5 depietdrdtking result of MM-JT
(using SD models) and COR-HMM on a test mixture of two femaleakers. This demonstrates
the excellent speaker assignment of our method, providat ghor knowledge of speaker
characteristics is available.

All variants of the proposed method are compared in term&gf,; only. Fig. 6 compares
the performance of various tracking methods, i.e. MM-BA, MO and MM-JT, using speaker
dependent models. The performance of all three trackessengially equivalent. The situation is
somewhat different for gender dependent models shown in7Figor the same-gender scenario
(MA1-MA2, FE1-FE2), the parameters of the FHMM are the samesach Markov chain.

Moreover, the observation likelihood is symmetricadip and xs, i.e. p(y|z1, x2) = p(y|zs, z1).
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Fig. 7. Ero.ia1 of MIXMAX approach using gender dependent models and diffetracking algorithms on GRID. Each box

depicts the mean and standard deviation of a method overt #nigtires of a given speaker pair.

In that case, we observe that both variants of the loopy rmax-algorithm work significantly
worse than the junction-tree algorithm. Fig. 8 comparegpt#réormance for speaker independent
models. In this case, MM-BA and MM-ON perform worse than MW{dr all speaker pairs.

To indicate the computation time of the methods involvedasaeements were performed on
a 2.4 GHz dual core machine with 8 Gb main memory. All algonshwere implemented and
tested in Matlab. For computation of the MIXMAX likelihoodls (4), a Matlab-MEX imple-
mentation was used. As shown in Table VII, the computatioeqlirements of the MIXMAX
likelihoods depend on the particular set of GMMs involvedc@mparison with (4) reveals that
the computational complexity is mostly determined by thrent€' = Z'X‘ Z'X‘ M 4y Ma 4y,

r1=1 xro=1

which depends on the actual set of GMMs involved. Table Vbves the average computation
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Fig. 8. Ero:ar of MIXMAX approach using speaker independent models antemdifnt tracking algorithms on GRID. Each

box depicts the mean and standard deviation of a method otest nixtures of a given speaker pair.

time for the MIXMAX likelihoods for all three training scenas, together with the average
value ofC. Table VIII indicates the computation time for the thredetiént tracking algorithms.

In this setting with two speakers, the time performance ofsJdomparable to BA. Note however
that the computational complexity of JT is an order of magpht larger than for BA or ON,

while the complexity of ON and BA differs only by a constanttfar. Thus, for tracking more
than two speakers, the computation time for JT is expectdzetmmuch higher than for BA or
ON.
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TABLE VII
AVERAGE COMPUTATION TIME OF MIXMAX LIKELIHOODS IN (4), SHOWN IN SECONDS PER ANALYSIS
FRAME. FOR EACH TRAINING SCENARIO, THE AVERAGE OF FACTOR' IS GIVEN.

C Time [s]
SD | 9.45e5 0.44
GD | 6.60e6| 2.71
S| | 1.09e7| 4.38

TABLE VI
AVERAGE COMPUTATION TIME OF TRACKING ALGORITHMS, SHOWN IN ECONDS PER ANALYSIS
FRAME. FOR EACH METHOD, THE MEAN AND STANDARD DEVIATION IS GVEN.

JT BA ON
Mean | 0.15| 0.11 | 0.42
Std | 0.01| 0.002 | 0.03

E. Results on Mocha-TIMIT Database

On the Mocha-TIMIT database, each example of the test setwizeed with white Gaussian
noise at different SNR conditions, ranging from 40dB dowrOtB in 10dB steps. For each
SNR condition, we evaluate the performance of the proposethads, where the parameters
remained optimized for clean speech. Fig. 9 shéws,, for COR-HMM, MM-JT and LI-JT for
all noise conditions. Likewise, Fig. 10 shou;,; for the same setup. LI-JT and MM-JT have
an equivalent performance over a range of SNR conditionsxdov20dB, and both significantly
outperform COR-HMM. Both proposed interaction models shieereasing performance for
lower SNR conditions. At 0dB SNR, MM-JT still outperformsetibaseline algorithm, while

LI-JT is less robust to noise and performs worse than COR-HMM

VI. APPLICATION TO SINGLE-CHANNEL SOURCE SEPARATION

We demonstrate the performance of the proposed multipitatking algorithm when applied
to the problem of SCSS. Based on the estimated pitch trajestave generate a binary mask

for each speaker, and recover an estimate of the single epatikrance by masking the mixed
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Fig. 9. Erotar Of COR-HMM, speaker dependent MM-JT, and speaker deperdeit approach on Mocha-TIMIT database
with background noise at different SNRs. Each box depiatsniean and standard deviation of a method over 60 male-female

mixtures.

speech spectrograi|t, u], whereu denotes the frequency index. For more advanced SCSS
methods, we refer the interested reader to [12], [31], [45].

Specifically, given the pitch trajectory related to spealef: [t], we synthesise for eadhthe
corresponding excitation signal:

U(‘:)i[t]vfrnaw)
eft,n] = Y sin(udftin + LYt u] )+ en], (11)

u=1

wheren = [1,...,T,] andT, = 512 is the number of samples within the synthesis framé) is

filt] in radians £Y[t, u] is the phase of the mixed speech spectrogram[&ad[t], f,....) denotes

the number of harmonics correspondingdagt| up to a predefined frequenc,,.. = 4kHz.
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Fig. 10. Er,:a; of COR-HMM, speaker dependent MM-JT, and speaker dependelt approach on Mocha-TIMIT database
with background noise at different SNRs. Each box depiatsniean and standard deviation of a method over 60 male-female

mixtures.

Further,e[n] is a Gaussian random signal filtered by a high-pass with tyfgf.. For unvoiced
frames (i.e.f;[t] = 1), we set the excitation;[n] to a white Gaussian noise sequence of length

T,. Next, we compute the discrete Fourier transform (DFT) achesynthesis frame
E;[t,u] = DFT{e;[t,n|},
and obtain the binary mask of speaKkeas

1, if |Ei[t,ul| > |Est, u
N Baft,ull > Bt o]

0, otherwise.

We set the binary mask of speaker 2 to the complement, i.e, BMBM,. Using the binary
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Fig. 11. Performance in terms of the target-to-masker (@MR) for single-channel speech separation. Each panevsiioe
results using pitch trajectories obtained by five differerdthods: RAPT denotes the case where the reference pijehttndes
are used, SD-MM-JT, GD-MM-JT and SI-MM-JT denote the pitdjdctories obtained by the proposed MM-JT method in the
speaker dependent, gender dependent and speaker indefpsceleario, respectively, and COR-HMM denotes the caseenvhe
the pitch trajectories are obtained from the baseline nakftip The leftmost panel summarizes the TMR for the samadgen
female (SGF) scenario, while the middle and rightmost paneimarize results for the same-gender male (SGM) and eliffer
gender (DG) scenario, respectively. Each box depicts thennaed standard deviation over all test mixtures and tangester

combinations.

mask, we obtain the estimated spectrogram of speaker
Si[t,u] = BM[t, u] |Y[t, u]| exp(j LY [t, u]).

From this, we finally re-synthesize the time domain signal.
We use the commonly used target-to-masker (TMR) measuresgesa the quality of the

separation result:
Zt,u 522 [t7 U]

Zt,u(si [t> u] - Si[t’ u])2 7
where S;[t, u] is the clean speech spectrogram of speaker

TMR,; = (12)

We experimentally evaluate the separation performancenenGRID database in terms of

the TMR, using the same experimental setup as introduceckatiosn V. We compare the
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results obtained by 4 different pitch extraction methodsstFwe use the reference pitch
trajectories extracted directly from the single speeckratices using RAPT. Next, we use the
pitch trajectories obtained from the proposed MM-JT mettrathed for the speaker dependent,
gender dependent and speaker independent scenario (SDAIVMED-MM-JT and SI-MM-JT),
respectively. Finally, we use the pitch trajectories frdra baseline COR-HMM method [1]. We
show performance results in Fig. 11. For the same-gendalé(8GF) and the different-gender
(DG) scenario, separation results using SD-MM-JT achide®st the same TMR as for the
reference pitch (RAPT). Speech separation is more diffimrltthe same-gender male (SGM)
scenario, where performance drops relative to RAPT usingVBDBJT. Results using GD-MM-
JT are significantly better than COR-HMM for the DG scenaNote that these results correlate

well with Ero; and Ep,.,.,, presented in Table V.

VIlI. CONCLUSION

We have presented a method for multipitch tracking baseti@WiXMAX interaction model
as well as a linear interaction model. The performance ofpifeposed system was compared
to a state-of-the-art multipitch tracking algorithm [1].eWihvestigated the performance of the
proposed method using speaker dependent, gender depamikspeaker independent models,
and evaluated the robustness of the proposed method to mdige at various SNR conditions.
Moreover, we examined the performance in terms of corresalsgr assignment, and proposed a
new error measure for this purpose. Additionally, we coragahe performance using different
tracking algorithms, and proposed a loopy max-sum scheglutiechanism for online tracking.
Finally, we evaluated the performance of single-channetsh separation based on the estimated
pitch trajectories.

For speaker dependent models, the proposed method is abdeldoe the error raté;
on average by 51% relative to the baseline method [1]. Maredte proposed method signif-
icantly improves the correct assignment of pitch trajaesto corresponding speakers, which
is important for the task of SCSS. Using gender dependenpeaker independent models, we
experience a performance drop relative to speaker depenetels. However, the resulting error
rate still outperforms the baseline algorithm. The MIXMAMeraction model achieves a better
robustness to additive white Gaussian noise than the linéaraction model. The performance

with different tracking methods is mostly identical for thgeaker dependent case and when using
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gender dependent models applied to the different gendeasoe In all other cases, the exact
junction tree algorithm clearly outperforms the other kiag variants based on approximate
inference.

The advantage of the proposed method is the possibility tegrate a-priori knowledge
about speaker characteristics into the statistical matfel.have shown that speaker dependent
models clearly improve the correct speaker assignmenttoh prajectories, and demonstrated
the resulting performance gain for SCSS. The usage of ictieramodels allows the modelling
of all involved speakers independent of each other. Futusek will investigate methods to
adapt speaker models during processing, i.e. starting spidaker independent models, we will
infer speaker relevant information and use this infornratm adapt towards speaker dependent

models.

APPENDIX

DERIVATION OF GMM BASED OBSERVATION PROBABILITY USING THEMIXMAX MODEL

Given the density of two vector valued, independent randanables,S; and.S;, we seek to
derive the density oY = max(S;, S,). First, it is easy to see that the cumulative distribution

of Y, ®y(y), is given as

Oy (y) = p(Si1<wi,.,5%0 <yp,S21 <y1,...5p < Yp)

= / / / / 81,1, -y S1,D5 52,15 -+ 82,D) d81,1 e 'd81,D d82,1 e 'd52,D7

whereS; 4 is the 4 element ofS;. Due to the independence &f and S,, we have that

Py (y) = @s, (y)Ps,(y),

where ®g,(-) denotes the cumulative distribution with respect9p Making the conditional

dependency oB; on pitch stater; explicit, and using the definition of the GMM in (3), we get

’y|$2 ZZ O a H(I) <yd‘ezmmzi> )
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where®(y|d) = [’ N(z|0)dz is the univariate cumulative normal distribution. We novtasb

the conditional density ok by partial derivation of its cumulative distribution:

oP P
p(ylzi,z2) = méy(ym,xz) i 8dq)sl(y|x1)(l>s2(y|x2)
d d
oP Mo M3,y D
- i | 35 e ITo (i) ) ( 3 o ITo (i)
JV[111M2JL2

= Hﬁgyd Z Z a1x1a2x2Hq) <yd|91x1> (y |92x2>

m=1 n=1

My 4y Mo,

S Zalxlo‘?mf[{ <yd|91x1) ( |92x2>+®(yd|91x1) (yd|92:c2>}.

m=1 n=1
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