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Abstract

We present a simple and efficient feature modeling approach for tracking the pitch of two si-

multaneously active speakers. We model the spectrogram features of single speakers using Gaussian

mixture models in combination with the minimum descriptionlength model selection criterion. To

obtain a probabilistic representation for the speech mixture spectrogram features of both speakers, we

employ the mixture maximization model (MIXMAX) and, as an alternative, a linear interaction model.

A factorial hidden Markov model is applied for tracking pitch over time. This statistical model can

be used for applications beyond speech, whenever the interaction between individual sources can be

represented as MIXMAX or linear model. For tracking, we use the loopy max-sum algorithm, and

provide empirical comparisons to exact methods. Furthermore, we discuss a scheduling mechanism of

loopy belief propagation for online tracking. We demonstrate experimental results using Mocha-TIMIT

as well as data from the speech separation challenge provided by Cooke et al. We show the excellent

performance of the proposed method in comparison to a well known multipitch tracking algorithm based

on correlogram features. Using speaker dependent models, the proposed method improves the accuracy

of correct speaker assignment, which is important for single-channel speech separation. In particular, we

are able to reduce the overall tracking error by 51% relativefor the speaker dependent case. Moreover,
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we use the estimated pitch trajectories to perform single-channel source separation, and demonstrate the

beneficial effect of correct speaker assignment on speech separation performance.

Index Terms

Speech analysis, multipitch tracking, factorial hidden Markov model (FHMM), mixture maximiza-

tion, Gaussian mixture model (GMM).

I. INTRODUCTION

Estimation and tracking of pitch is an important and ongoingresearch area in speech and audio

signal processing over the last decades.1 Speech applications based on single pitch estimates

involve speech coding [4], prosody analysis [5], speaker identification [6], speech enhancement

for hearing aids [7], and speech recognition for tonal languages [8]. Moreover, pitch may serve

deaf people as an additional cue for lipreading [9]. Some of the best performing algorithms for

single pitch estimation are RAPT [2] and YIN [10]. RAPT extracts a set of candidate peaks from

the normalized autocorrelation function (NACF) and tracksthe most likely pitch trajectory using

the Viterbi algorithm. YIN proposes a series of steps to modify and improve the autocorrelation

method used for pitch estimation. Likewise, many other algorithms are based on extracting

local maxima from short-time periodicity measures such as the NACF, the average magnitude

difference function (AMDF), or modifications thereof. For an early comparison of single pitch

estimation methods, we refer the interested reader to [3].

This paper is concerned with estimation of pitch in the more challenging scenario of multiple

concurrent speakers. Applications of multipitch trackingof speech involve single-channel speech

separation (SCSS) [11], [12] and co-channel speaker identification [13]. Beyond speech, a

prominent application of multipitch tracking is the automatic transcription of music (see [14]

and references therein). Methods for multipitch tracking of speech include [1], [15], [16], [17]

and recently [18]. Since we compare our approach to the method of Wu et al. [1], we shortly

1Pitch refers to a perceptual quality, i.e. the frequency of a pure sinusoid perceived with the same tone as the given signal

segment under investigation. In contrast to this, thefundamental frequency f0 refers to the inverse of the smallest period

of a quasi-periodic signal. Although the fundamental frequency correlates well with the perceived pitch of a signal, certain

perceptual phenomena such as pitch doubling/halving find noexplanatory support byf0. Hence, the term pitch is mostly used

in psychoacoustics. Nevertheless, we use the term pitch in this paper since it is more consistent with previous literature [1], [2],

[3].
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summarize their method in the following: It is based on the unitary model of pitch perception

[19], upon which several improvements are introduced to yield a probabilistic representation of

the periodicities in the signal. First, the input signal is decomposed into 128 subbands using

a gammatone filterbank, and the amplitude envelope is extracted for high frequency channels

(center frequency above 800Hz). The NACF is then computed onframes for every channel.

Subsequently, a scheme is employed to discard channels whose periodicity information is likely

to be unreliable due to noise. For selecting a low frequency channel, the maximum peak at

nonzero lags must exceed a threshold. For high frequency channels, the periodicity information

must be consistent with the autocorrelation computed on a larger time frame. If a high frequency

channel is selected, an additional peak selection routine is employed. The final set of peaks

selected from various channels serves as a basis to create a probabilistic representation of zero,

one or two pitch periodicity values at each time frame. In brief, the method calculates the

likelihood of pitch periodicities under the given observation for the hypothesis of one and two

pitch values. Semi-continuous pitch trajectories are thenobtained by tracking these likelihoods

using a hidden Markov model (HMM). Although this model provides an excellent performance

in terms of accuracy, it is not possible to correctly link each pitch estimate to its source speaker.

In this paper, we aim to follow a quite different approach formultiple pitch tracking which is

solely based on a statistical model. In contrast to auditory-based approaches such as [1], explicit

heuristics such as peak or channel selection are hidden in the statistical model. In particular, the

proposed system for multipitch tracking consists of several modules: i) The spectrogram of each

single speaker is modelled using Gaussian mixture models (GMMs), whereas the minimum

description length (MDL) [20] criterion is applied to find the optimal number of Gaussian

components. Training of GMMs can be based on a large set of different speakers, which results

in a speaker independent model. On the other hand, a priori knowledge of speaker specific

characteristics can be incorporated to obtain a speaker dependent model. As we will show in the

experimental section, speaker dependent models have the advantage to allow a correct assignment

of pitch trajectories to their corresponding speakers, which is an important cue for single-channel

speech separation. ii) Two different interaction models – the MIXMAX model [21] and a linear

model – are explored to obtain a probabilistic representation of the observed speech mixture of
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both speakers.2 iii) The statistical observation model of a speech mixture is then used within

the framework of factorial hidden Markov models (FHMMs) [22], which provide the natural

means for tracking the pitch trajectories of both speakers.FHMMs enable the tracking of the

states of multiple hidden Markov processes evolving in parallel over time, where the available

observations are considered as a joint effect of all single Markov processes. The explicit factorial

nature among the various Markov chains allows the use of moreefficient inference algorithms

compared to an equivalent HMM. We use the loopy max-sum algorithm to obtain approximate

solutions to the inference problem, and discuss a scheduling mechanism for online tracking.

Furthermore, we empirically compare the results to exact inference.

The paper is organized as follows: Section II introduces FHMMs for multipitch tracking and

establishes the terminology for subsequent sections. Section III presents the MIXMAX as well as

the linear interaction model, and details the speaker modelbased on GMMs. Section IV describes

the belief propagation methods used for tracking. Section Vdiscusses the experimental setup

and performance results on two different databases, namelyMocha-TIMIT [23] and the GRID

corpus [24]. Section VI presents a simple approach to perform SCSS based on the estimated

pitch trajectories, and demonstrates performance results. Finally, section VII concludes.

II. FACTORIAL HIDDEN MARKOV MODELS

Factorial hidden Markov models enable the tracking of the states of multiple Markov processes

evolving in parallel over time, where the available observations are considered as a joint effect of

all single Markov processes. For simplicity, we present thecase of two Markov chains depicted

as the factor graph in Fig. 1. The hidden state random variables are denoted byx(t)
k , wherek

indicates the Markov chain andt the time frame from1 to T . Similarly, realizations of observed

random variables att are collected in aD-dimensional vectory(t) ∈ R
D.3 Eachx

(t)
k represents

a discrete random variable with state spaceX and cardinality|X|. The edges between nodes

indicate a conditional dependency between random variables. Specifically, the dependency of

hidden variables between two consecutive time instances isdefined for each Markov chain by

the transition probabilityp(x
(t)
k |x

(t−1)
k ). The dependency of the observed variabley(t) on hidden

2Note that our approach can in general be extended to more thantwo speakers.

3Note that boldface symbols denote vectors throughout the manuscript.
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Fig. 1. A factorial HMM shown as a factor graph [25]. Factor nodes are depicted as shaded rectangles together with their

functional description. Hidden variable nodes are shown ascircles. Here, observed variablesy(t) are absorbed into factor nodes.

variablesx(t)
1 andx

(t)
2 is defined by the observation probabilityp(y(t)|x(t)

1 , x
(t)
2 ). Finally, the prior

distribution of the hidden variables in every chain is denoted by p(x
(1)
k ). Denoting the whole

sequence of variables, i.e.{x(t)} =
⋃T

t=1{x
(t)
1 , x

(t)
2 } and{y(t)} =

⋃T

t=1 y(t), the joint distribution

of all variables is given by

p({x(t)}, {y(t)}) = p({x(t)})p({y(t)}|{x(t)}) =

2
∏

k=1

[

p(x
(1)
k )

T
∏

t=2

p(x
(t)
k |x

(t−1)
k )

]

T
∏

t=1

p(y(t)|x(t)
1 , x

(t)
2 ).

The number of possible hidden states per time frame is|X|2. As pointed out in [22], this

could also be accomplished by an ordinary HMM. The main difference, however, is the constraint

placed upon the transition structure. While an HMM with|X|2 states would allow any|X|2×|X|2

transition matrix between two hidden states, the FHMM is restricted to two|X|× |X| transition

matrices.

As in most previous work for multipitch tracking [1], [26], [27], we restrict ourselves to two

simultaneously speaking subjects, i.e. two Markov chains.Each Markov chain models the pitch

trajectory of one speaker, hence the hidden variablex
(t)
k denotes the pitch state of speakerk at

time t. Each hidden variable has|X| = 170 states, where state value ’1’ refers to ’no pitch’ (i.e.

unvoiced or silent), and state values ’2’-’170’ encode different pitch frequencies ranging from

80 to 500Hz. Specifically, the pitch value corresponding to statex ∈ {2, ..., 170} is f0 = fs

30+x
,

where the sampling ratefs = 16kHz. Similar to [1], this results in a nonuniform quantization

of the pitch interval, where low pitch values have a more fine-grained resolution than high pitch

values.
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The observation probabilitiesp(y(t)|x(t)
1 , x

(t)
2 ) are obtained by using speaker interaction models,

as described in the next section. The construction of transitions p(x
(t)
k |x

(t−1)
k ) and priorsp(x

(1)
k )

will be described in section V-B.

III. T HE SPEAKER INTERACTION MODEL

At each time framet, the FHMM models the feature vectory(t) extracted from the mixture

signal by the observation probabilityp(y(t)|x(t)
1 , x

(t)
2 ). Recently, we modelled the spectrogram

features for each pitch pair with one individual GMM [28]. Inthis work, however, the design of

p(y(t)|x(t)
1 , x

(t)
2 ) is guided by the insight that feature vectors based on the magnitude spectrogram

or log-spectrogram can be approximated by aninteraction model f : y(t) ≈ f(s
(t)
1 , s

(t)
2 ), where

s
(t)
i is the corresponding feature vector resulting from a singlespeaker. Thus we can approximate

the desired observation probability using statistical models of single speakers. In the following,

we provide details on two specific interaction models.

A. The Mixture-Maximization Model

The mixture-maximization (MIXMAX) model was originally proposed in [21] for noise robust

speech recognition. Since then, it has been used for simultaneous recognition of cochannel

speech [29], speech enhancement [30], SCSS [31], speaker identification [32] and joint single-

channel speech separation and recognition [33]. It is basedon the insight that the log-spectrum

of two speakers can be approximated by their elementwise maximum [21]. Specifically, for each

time instantt,

y(t) ≈ max(s
(t)
1 , s

(t)
2 ), (1)

wheres
(t)
i is the log-spectrum of speakeri. The underlying assumption is the sparse nature of

speech in time-frequency representations, i.e. each particular time-frequency cell of a mixed-

speech spectrogram is dominated by a single speaker – this isvalid with high probability. This

leads to the notion of binary masks in computational auditory scene analysis (CASA) [34] and

SCSS [31]. In [35], it is shown that (1) is a nonlinear minimummean square error (MMSE)

estimator of the mixture log-spectrum assuming that the phase of both sources has uniform

distribution. We might think ofy(t) being generated by the stochastic model shown in Fig. 2.

For a pitch value related to statex(t)
i , speakeri generates a log-spectrum,s

(t)
i , that is randomly
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Fig. 2. Pitch dependent generation of the mixture log-spectrum y(t). Both speakers produce a log-spectrums
(t)
i in dependency

on pitch statex(t)
i . The observed log-spectrumy(t) of the speech mixture is approximated by the elementwise maximum of

both single speaker log-spectra.

drawn from thesingle speaker model p(s
(t)
i |x

(t)
i ). Both log-spectra are then combined via the el-

ementwise maximum operator to form the observable log-spectrum y(t). Thus,p(y(t)|s(t)
1 , s

(t)
2 ) =

δ
(

y(t) −max(s
(t)
1 , s

(t)
2 )

)

, whereδ(·) denotes the Dirac delta.

In general, we obtain the observation probability by marginalizing over the unknown single

speaker log-spectra:

p(y(t)|x(t)
1 , x

(t)
2 ) =

∫ ∫

p(y(t)|s(t)
1 , s

(t)
2 )p(s

(t)
1 |x

(t)
1 )p(s

(t)
2 |x

(t)
2 )ds

(t)
1 ds

(t)
2 . (2)

For the sake of brevity, we omit the explicit dependence of random variables ont, where

appropriate. We use GMMs to model the state-conditional single speaker spectra of each speaker,

i ∈ {1, 2}, according to

p(si|xi) = p(si|Θi,xi
) =

Mi,xi
∑

m=1

αm
i,xi
N

(

si|θ
m
i,xi

)

, (3)

whereMi,xi
≥ 1 is the number of mixture components, andαm

i,xi
corresponds to the weight of

each componentm = 1, . . . , Mi,xi
. These weights are constrained to be positive,αm

i,xi
≥ 0, and

∑Mi,xi

m=1 αm
i,xi

= 1. The corresponding GMM for pitchxi is fully specified by the parameter set

Θi,xi
=

{

αm
i,xi

, θm
i,xi

}Mi,xi

m=1
, whereθm

i,xi
=

{

µm
i,xi

,Σm
i,xi

}

. We assume that the covariance matrices

Σ
m
i,xi

are diagonal.

Given a set ofNi log-spectra from speakeri, Si = {s(1)
i , ..., s

(Ni)
i }, together with corresponding

reference pitch labels,{x(1)
i , ..., x

(Ni)
i } we can easily learn a speaker dependent GMMp (si|Θi,xi

)

for each pitch statexi, and each speakeri, using the EM algorithm [36]. Accordingly, we have

to determine170 GMMs for each speaker, i.e. one GMM for each pitch statexi. Further, we

use MDL [20], [37] to determine the number of components of each GMM automatically. We

denote the set of training samples for pitch statexi asSi,xi
= {s(k)

i |x
(k)
i = xi}, and|Si,xi

| is the
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size of the set. For eachSi,xi
, we train a range of candidate GMMs with different number of

components, and select the GMM which minimizes

MDL(Θi,xi
) = − log p (Si,xi

|Θi,xi
) +

(2D + 1)Mi,xi

2
log |Si,xi

|,

where the first term denotes the log-likelihood for the training data, i.e.log p (Si,xi
|Θi,xi

) =
∑

si∈Si,xi
log p(si|Θi,xi

), and the second term relates to the complexity of the model with respect

to the available data. Indeed, MDL is a method to find the optimal tradeoff between data-fit and

model complexity.

Hence, by introducing speaker specific GMMs in (2) and marginalizing oversi, we obtain

the pitch conditional observation probability

p(y|x1, x2) =

M1,x1
∑

m=1

M2,x2
∑

n=1

αm
1,x1

αn
2,x2

D
∏

d=1

{

N (yd|θ
m,d
1,x1

)Φ(yd|θ
n,d
2,x2

) + Φ(yd|θ
m,d
1,x1

)N (yd|θ
n,d
2,x2

)
}

, (4)

whereyd gives thedth element ofy, θ
m,d
i,xi

gives thedth element of the corresponding mean and

variance, andΦ(y|θ) =
∫ y

−∞
N (x|θ)dx denotes the univariate cumulative normal distribution. A

detailed derivation of (4) is provided in the appendix.

B. The Linear Interaction Model

As an alternative to the MIXMAX approach, we can directly model the magnitude spectrum

of a speech mixture. Denoting the short-time magnitude spectrum of speakeri ∈ {1, 2} at time

t by s̃
(t)
i , we approximate the resulting short-time magnitude spectrum of the speech mixture by

ỹ(t) ≈ s̃
(t)
1 + s̃

(t)
2 .

To obtain an observation model, we make use of the fact that the sum of two independent

random variables is modelled by the convolution of their individual probability densities, i.e.

p(ỹ|x1, x2) = p(s̃1|x1) ∗ p(s̃2|x2) [38], where∗ denotes the convolution operator. Further, the

convolution of two Gaussian densities results again in a Gaussian, with mean and covariance

matrix being the sum of the individual means and covariances, respectively. Hence,N (ỹ|µ1 +

µ2,Σ1 +Σ2) = N (s̃1|µ1,Σ1)∗N (s̃2|µ2,Σ2). This easily extends to GMMs, as the convolution

of two GMMs results in a mixture of all pairwise convolved component densities. Similar as

in the MIXMAX model, we train speaker dependent GMMs to modelthe magnitude spectrum,
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p (s̃i|Θi,xi
). Then, we obtain the observation model as

p(ỹ|x1, x2) =

M1,x1
∑

m=1

M2,x2
∑

n=1

αm
1,x1

αn
2,x2
N

(

ỹ|µm
1,x1

+ µn
2,x2

,Σm
1,x1

+ Σ
n
2,x2

)

. (5)

IV. TRACKING

Given the set of observations{y(t)}, the task of tracking involves searching the sequence of

hidden states{x(t)}∗ that maximizes the conditional distribution:

{x(t)}∗ = arg max
{x(t)}

p({x(t)}|{y(t)}). (6)

For HMMs, the exact solution to this problem is found by the Viterbi algorithm. Although an

FHMM could be expressed by an equivalent HMM, more efficient tracking algorithms exploit the

explicit factorization into individual Markov chains. Thejunction tree algorithm [39] provides an

exact solution for FHMMs. However, its computational complexity increases exponentially with

the number of hidden Markov chains. Several algorithms are derived in [22] from the framework

of variational inference to obtain approximate solutions for the sake of reduced complexity. The

sum-product algorithm [25] can be derived under a similar setting of variational principles [40],

although more intuitive derivations exist for graphs without loops. When applied on a graph

with loops, as is the case of FHMMs, the solutions are in general not guaranteed to converge

and can only approximate the optimal solution. For a detailed discussion, we refer the interested

reader to [25], [41], [40].

In this work, we use both the exact junction tree algorithm aswell as the max-sum algorithm

(a variant of the sum-product algorithm) to solve (6). Moreover, we propose a message passing

schedule for the max-sum algorithm to enable online tracking. In the experiments, we compare

the performance of all presented inference methods in termsof accuracy and computation time.

A. Junction Tree Algorithm

Exact inference on arbitrary graphical models is usually accomplished by first transforming

the graphical model into a junction tree, where then belief propagation is performed [41], [42].

For the problem of finding the marginal distribution

p(x
(t)
i |{y

(t)}) =
∑

{x(t)}\x
(t)
i

p({x(t)}|{y(t)}), (7)
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Ghahramani and Jordan [22] provide an exact inference algorithm for FHMMs based on the

junction tree algorithm.4 We present the equivalent formulation on the max-sum semiring [43]

in Fig. 3,5 which provides an exact solution to (6). The computational complexity (without

considering the computation ofp(y|x1, x2)) is O(TK|X|K+1), whereK is the number of Markov

chains. ForK = 2, as in our case, tracking is still tractable.

B. Max-Sum Algorithm

The max-sum algorithm is based on passing messages between nodes of a graph. Among

various types of graphs, factor graphs [25] have become a popular tool to depict the mechanisms

of message passing. Consider again Fig. 1, which shows an FHMM as factor graph. The

functional dependency of each variable node, for brevity called x, is made explicit by “factor

nodes”, shown as shaded rectangles, i.e. each rectangle denotes a functionf({x̂}) of its adjacent

(i.e. neighboring) variable nodes{x̂}. For the max-sum algorithm, each node sends to every

neighbor a vector valued messageµ, which is itself a function of the messages it received,

(as well asf({x̂}), for the case of a factor node). When applied to factor graphswith loops,

message passing results in an iterative procedure (loopy max-sum algorithm). A message from

variable nodex to factor nodef is

µx→f(x) =
∑

g∈n(x)\f

µg→x(x), (8)

while a message from factorf to variablex is

µf→x(x) = max
{x̂}\x



ln f({x̂}) +
∑

y∈{x̂}\x

µy→f(y)



 . (9)

Here,n(x) denotes the set of neighbor nodes ofx. We re-normalize each messageµ such that
∑|X|

i=1 eµ(i) = 1. Although this does not influence the final results, it ensures the numerical stability

of the message passing scheme [44]. We restrict each node to send a maximum of 15 messages

4For two setsA andB, A\B refers to the set difference. The notation
P

{ai}
denotes a nested sum, where one summation

is performed for each element in{ai}. I.e. we sum in (7) over all hidden nodes exceptx
(t)
i .

5Informally, a semiring is an algebraic structure defined as aset K, together with two binary operations over elements of

that set. Among other requirements, the binary operations must satisfy the distributive law. As shown in [43], the sum-product

algorithm can be translated to a semiring involving other binary operations. In other words, the algorithmic frameworkfor the

problem ’sum of products’ can be translated to obtain an algorithm for the problem ’maximum of sums’.
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Input: y(t) ∀ t ∈ {1, ..., T}

Output:
(

x
(t)∗

1 , x
(t)∗

2

)

∀ t ∈ {1, ..., T}

Initialization: Compute likelihoodsp
(

y(t)|x(t)
1 , x

(t)
2

)

∀ t ∈ {1, ..., T}

γ(1)
(

x
(1)
1 , x

(1)
2

)

← ln p
(

x
(1)
1

)

+ ln p
(

x
(1)
2

)

+ ln p
(

y(1)|x(1)
1 , x

(1)
2

)

Forward recursion:

for ∀t ∈ {2, ..., T} do

γ
(t)
1

(

x
(t)
1 , x

(t−1)
2

)

← max
x
(t−1)
1

[

ln p
(

x
(t)
1 |x

(t−1)
1

)

+ γ(t−1)
(

x
(t−1)
1 , x

(t−1)
2

)]

β
(t)
1

(

x
(t)
1 , x

(t−1)
2

)

← arg max
x
(t−1)
1

[

ln p
(

x
(t)
1 |x

(t−1)
1

)

+ γ(t−1)
(

x
(t−1)
1 , x

(t−1)
2

)]

γ
(t)
2

(

x
(t)
1 , x

(t)
2

)

← max
x
(t−1)
2

[

ln p
(

x
(t)
2 |x

(t−1)
2

)

+ γ
(t)
1

(

x
(t)
1 , x

(t−1)
2

)]

β
(t)
2

(

x
(t)
1 , x

(t)
2

)

← arg max
x
(t−1)
2

[

ln p
(

x
(t)
2 |x

(t−1)
2

)

+ γ
(t)
1

(

x
(t)
1 , x

(t−1)
2

)]

γ(t)
(

x
(t)
1 , x

(t)
2

)

← γ
(t)
2

(

x
(t)
1 , x

(t)
2

)

+ ln p
(

y(t)|x(t)
1 , x

(t)
2

)

end for
(

x
(T )∗

1 , x
(T )∗

2

)

← arg max
x
(T )
1 ,x

(T )
2

[

γ(T )
(

x
(T )
1 , x

(T )
2

)]

Backtracking:

for ∀t ∈ {T, ..., 2} do

x
(t−1)∗

2 ← β
(t)
2

(

x
(t)∗

1 , x
(t)∗

2

)

x
(t−1)∗

1 ← β
(t)
1

(

x
(t)∗

1 , x
(t−1)∗

2

)

end for

Fig. 3. The junction tree algorithm for a two-chain FHMM on a max-sum semiring. This algorithm gives the exact solution

to (6). For the special case of an HMM (i.e. FHMM with a single Markov chain), this algorithm is equivalent to the well known

Viterbi algorithm.

per edge. Further, each node only re-sends a message to a neighbor if it is significantly different

from the previously sent message in terms of the Kullback-Leibler-divergence. For initialization,

variable nodes send messages with all elements set to zero. After the last iteration, we obtain the

maximum a posteriori configurationp∗(x) of each variable nodex as a function of its incoming

messages:

p∗(x) = max
{x(t)}\x

p({x(t)}|{y(t)}) =
∑

g∈n(x)

µg→x(x). (10)
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We obtain the approximate solution as the set of individual maxima,x∗ = arg max
x

p∗(x) ∀x ∈

{x(t)}. Neglecting again the computation ofp(y|x1, x2), the computational complexity of this

approach isO(TK|X|K), i. e. the complexity of the max-sum algorithm is an order of magnitude

lower than for the junction tree algorithm.

We propose two different scheduling strategies for max-summessage passing. First, we

perform message passing on the FHMM using a complete speech mixture utterance at once.

This is suitable for offline processing of recordings. Second, for online processing, we parti-

tion the FHMM into overlapping segments of time frames,{T1, T2, ...}, and perform message

passing on each individual segment exclusively. This concept is illustrated in Fig. 4. Each

segment consists ofL time frames, and neighboring segments overlap byL − S frames, i.e.

Tτ = {(τ − 1)S + 1, (τ − 1)S + 2, ..., (τ − 1)S + L}. In stepτ , we restrict message passing

to time framest ∈ Tτ . Variable nodes in
{

x
(t)
1 , x

(t)
2 |t ∈ Tτ−1 ∩ Tτ

}

, as well as factor nodes

connected to them, have already received messages in the previous stepτ − 1. Message passing

is continued with those messages, thus enabling information flow from left to right. Similar to

the concept of smoothing in e.g. Kalman filters, we wish to incorporate information from future

observations at leastH time frames ahead. Thus, when message passing has finished instep

τ (i.e. each node has sent a maximum of 15 messages per edge), the maximum probability

configuration of all variable nodes up to time frame(τ − 1)S + L−H is evaluated, whereH

is the lower bound on the smoothing lag. Throughout the experiments, we set parameters to

L = 10, S = 4 andH = 2.

V. EXPERIMENTAL RESULTS

TABLE I

LABELS OF SPEAKERS AND FILENAMES USED FOR TESTING ON GRID DATABASE.

FE1 speaker 18 ’lwixzs’ ’sbil4a’ ’prah4s’

FE2 speaker 20 ’lwwy2a’ ’sbil2a’ ’prbu5p’

MA1 speaker 1 ’pbbv6n’ ’sbwozn’ ’prwkzp’

MA2 speaker 2 ’lwwm2a’ ’sgai7p’ ’priv3n’

July 29, 2010 DRAFT



Copyright (c) 2010 IEEE. Personal use is permitted. For any other purposes, Permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING, VOL. 1, NO. 1, OCTOBER 2010 13

τ = 1

t = 1 t = 2 t = 3 t = 4 t = 5

τ = 2

Fig. 4. For online scheduling, message passing is performedon consecutive segments{..., Tτ , Tτ+1, ...}. In this example, each

segment hasL = 2 time frames, and consecutive segments are shifted byS = 1 time frames. Factor and variable nodes with

black solid lines are involved in message passing on segmentT1 = {1, 2} andT2 = {2, 3}, respectively. Dashed nodes remain

inactive. When all nodes have sent a maximum of 15 messages instepτ = 1, message passing is continued on segmentT2. All

nodes depending on time frames inT1 ∩ T2 = {2} continue with messages received in stepτ = 1. With a supposed smoothing

lag H = 1 (see text for details), we evaluate after stepτ = 1 the maximum probability configuration of variables att = 1.

TABLE II

LABELS OF FEMALE AND MALE SPEAKERS USED FOR TRAINING GENDER DEPENDENT AND SPEAKER

INDEPENDENT MODELS ON GRID DATABASE.

speaker

FE 4 7 8 11 15 16 21 22 23 24

MA 3 5 6 9 10 12 13 14 17 19

We evaluate the performance of the proposed MIXMAX and linear interaction model, abbre-

viated as MM and LI, respectively. Both models are combined with one of the three presented

tracking methods (max-sum for batch processing, max-sum for online processing, and method

based on junction tree algorithm, abbreviated as BA, ON, andJT, respectively), giving a total

of six variants. We compare the performance of the proposed methods to the correlogram based

method [1], which we call COR-HMM. This method achieves a high accuracy for speech

mixtures in difficult signal conditions, and can be applied ad-hoc to a given speech mixture,

i.e. no training is required. However, being agnostic to speaker specific information, it does not

facilitate a proper assignment of the estimated pitch values to their corresponding speakers. In

contrast to this, the proposed methods can incorporate speaker specific information, which helps
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to identify the correct speaker assignment. Hence, the resulting pitch trajectories are suitable for

their use in SCSS [12]. A simple SCSS experiment based on the estimated pitch trajectories is

shown in section VI. To allow a proper comparison of our methods to COR-HMM, we use an

error measure that is invariant to correct speaker assignment. On the other hand, to evaluate the

performance of the proposed methods in terms of successful speaker assignment, we propose a

slightly modified error measure. We give details on both error measures below.

A. Data

For experimental comparisons, we used two different databases:

1) The Mocha-TIMIT database [23] consists of 460 English utterances from both a male and

a female speaker, sampled at16kHz. In addition, laryngograph signals are available for all

recordings, from which the reference pitchf0[t] was acquired using the RAPT method [2]

together with manual removal of erroneous pitch estimates in nonaudible regions.6 The

speaker dependent GMMs were trained on 400 sentences each, while 60 test instances

were obtained by mixing the remaining male and female utterances at0dB.

2) Two male and two female speakers (abbreviated as MA1, MA2 and FE1, FE2, respectively),

were selected from the GRID database [24], and 500 English sentences were selected per

speaker. For each speaker, 497 sentences were used to train speaker dependent GMMs,

while the remaining three sentences were used for testing, as shown in Table I. Test

mixtures were created for each speaker pair, including same-gender mixtures, resulting

in a total of 54 test mixtures (9 mixtures for each of the 6 speaker pairs). In addition

to speaker dependent (SD) GMMs, gender dependent (GD) GMMs were trained using

speakers listed in Table II, where again 497 utterances per speaker were used. Moreover,

one set of speaker independent (SI) GMMs was trained using all speakers in Table II.

As no laryngograph signals are available for this database,the reference pitch trajectories

were obtained directly from the single speech utterances using the RAPT method.

B. Experimental Setup

The featuresy(t) or ỹ(t) of the proposed methods are based on the log-spectrogram or

magnitude spectrogram of the speech mixture, respectively. Given an input signal at sampling rate

6An implementation of the RAPT algorithm is provided by the Entropic speech processing system (ESPS) “getf0” method.
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fs = 16kHz, we compute the spectrogram via the 1024 point FFT, usinga Hamming window of

length32ms and step size of10ms. Next, we obtain each observation vectorỹ(t) ∈ R
64 by taking

the magnitude of spectral bins 2-65, which corresponds to a frequency range up to1000Hz.7

Likewise, we obtainy(t) = log ỹ(t).

Both transition matrices of the FHMM are obtained by counting the transitions of the reference

pitch values from single speaker recordings in the trainingset. Additionally, we apply Laplace

smoothing on both transition matrices.8 Prior distributionsp(x
(1)
k ) are obtained likewise. Again,

these priors and transitions are obtained in a SD, GD and SI fashion using the training data

as proposed for the corresponding GMMs. Remarkably, we observed during the experiments

that performance results are consistently better if the transitions matrices remain unnormalized,

i.e. when usingp(x
(t)
k , x

(t−1)
k ) instead ofp(x

(t)
k |x

(t−1)
k ). Similar effects on performance results

are observed withp(x
(t)
k |x

(t−1)
k )α, where the additional tuning parameterα ≈ 2. Throughout the

experiments, however, we use unnormalized transitions. Speaker dependent GMMs are trained

on both databases, as described in section III-A and III-B. Moreover, gender dependent and

speaker independent experiments are performed on the GRID database. For training the GMMs

with MDL, we restricted the maximal number of components perGMM to 20.

C. Performance Measure

For every test instance, each method estimates two pitch trajectories,f̃ (1)
0 [t] and f̃

(2)
0 [t]. To

compare the performance of the proposed methods to COR-HMM,we use the error measure

proposed in [1]:Eij denotes the percentage of time frames wherei pitch points are misclassified

as j pitch points, i.e.E12 means the percentage of frames with two pitch values estimated

whereas only one pitch point is present. For each of the two reference pitch trajectories,f 1
0 [t]

andf 2
0 [t], the corresponding pitch frequency deviation is defined as

∆f (i)[t] = min
k

∣

∣

∣
f̃

(k)
0 [t]− f

(i)
0 [t]

∣

∣

∣

f
(i)
0 [t]

,

i.e. at each time instance, the closest of the two estimated pitch points is assigned to a reference

pitch trajectory. The gross detection error rateEGross is the percentage of time frames where

7This covers the most relevant frequency range, while keeping the model complexity low.

8Laplace smoothing amounts to the initialization of each element of the transition matrix with count one, i.e. adding theprior

information that each transition was observed at least once. This smoothes the transition probabilities.
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the frequency deviation∆f (i)[t] is larger than 20% for one or both referencesf
(i)
0 . The fine

detection errorE(i)
F ine is the average frequency deviation in percent at time frameswhere∆f (i)[t]

is smaller than 20%. The overall error,ETotal, is defined as the sum of all error terms:9 ETotal =

E01 + E02 + E10 + E12 + E20 + E21 + EGross + EF ine, whereEF ine = E
(1)
F ine + E

(2)
F ine.

To evaluate the performance in terms of successful speaker assignment, we propose a slightly

modified error measure. First, each of the two estimated pitch trajectories is assigned to a ground

truth trajectory,f (1)
0 [t] or f

(2)
0 [t]. From the two possible assignments,(f̃

(1)
0 → f

(1)
0 , f̃

(2)
0 → f

(2)
0 )

or (f̃
(1)
0 → f

(2)
0 , f̃

(2)
0 → f

(1)
0 ), the one is chosen for which the overall quadratic error is smallest.

Note that this assignment is not done for each individual time frame, but for the global pitch

trajectory. Next, we define thespeaker assigned pitch frequency deviation as

∆̄f (i)[t] =

∣

∣

∣
f̃

(i)
0 [t]− f

(i)
0 [t]

∣

∣

∣

f
(i)
0 [t]

,

wheref
(i)
0 [t] denotes the reference chosen forf̃

(i)
0 [t]. For each reference trajectory, we define the

corresponding permutation error̄Ei
P erm[t] to be one at time frames where the voicing decision

for both estimates is correct, but the pitch frequency deviation exceeds 20%, and̃f i
0[t] is within

the 20% error bound of the other reference pitch. This indicates a permutation of pitch estimates

due to incorrect speaker assignment. The overall permutation error rateĒPerm is the percentage

of time frames where either̄E1
Perm[t] or Ē2

Perm[t] is one. Next, we define for each reference

trajectory the corresponding gross errorĒi
Gross[t] to be one at time frames where the voicing

decision is correct, but the pitch frequency deviation exceeds 20% and no permutation error

was detected. This indicates inaccurate pitch measurements independent of permutation errors.

Again, the overall gross error ratēEGross is the percentage of time frames where eitherĒ
(1)
Gross[t]

or Ē
(2)
Gross[t] is one. This slightly different definition of the gross errorrate ensures that voicing

errors or permutation errors do not account for an additional increase in the gross error rate.

The fine detection error̄E(i)
F ine is the average speaker assigned frequency deviation in percent at

time frames wherē∆f (i)[t] is smaller than 20%. Finally, the overall error,ĒTotal, is the sum of

all error terms:ĒTotal = E01 + E02 + E10 + E12 + E20 + E21 + ĒGross + ĒF ine + ĒPerm, where

ĒF ine = Ē
(1)
F ine + Ē

(2)
F ine.

9Note thatETotal, as proposed in [1], can be larger than100%.
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Fig. 5. Tracking results of speaker dependent MM-JT and COR-HMM on GRID test mixture on two female speakers (’lwixzs’

and ’lwwy2a’). Top panel: Spectrogram of speech mixture, together with both reference pitch trajectories. Middle panel: Estimated

pitch trajectories using MM-JT, together with reference pitch trajectories (black solid lines). Bottom panel: Estimated pitch

trajectories using COR-HMM, together with reference pitchtrajectories (black solid lines).

D. Results on GRID Database

Table III summarizes the performance of the proposed MM-JT method on the GRID database

in terms ofETotal for all three training scenarios (SD, GD and SI). For comparison, Table IV

showsETotal of COR-HMM on GRID. This compares the accuracy of the proposed MM-JT

method to the baseline algorithm COR-HMM, independent of correct speaker assignment. Both

tables show that the main contributors toETotal are E21 and EGross. The overall accuracy of

MM-JT degrades when using GD or SI instead of SD models, however ETotal is still lower than

for COR-HMM.

TABLE III

RESULTS FOR MM-JT ON GRID DATABASE. PERFORMANCE IS MEASUREDIN TERMS OFETotal.

E01 E02 E10 E12 E20 E21 EGross EF ine ETotal

Mean 0.94 0.01 6.33 2.40 1.72 11.83 18.11 3.27 44.63
SD

Std 1.36 0.08 3.19 1.93 2.56 5.92 7.17 1.22 15.77

Mean 1.71 0.07 5.61 2.94 2.11 15.75 22.01 3.62 53.81
GD

Std 1.70 0.33 3.79 3.22 2.81 7.78 9.22 1.36 17.92

Mean 2.43 0.06 5.44 3.45 1.96 15.29 21.25 3.64 53.50
SI

Std 2.06 0.18 3.56 2.62 2.50 7.36 8.69 1.34 16.94
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TABLE IV

RESULTS FOR COR-HMM ON GRID DATABASE. PERFORMANCE IS MEASURED IN TERMS OFETotal.

E01 E02 E10 E12 E20 E21 EGross EF ine ETotal

Mean 1.00 0.08 8.46 0.87 2.56 19.97 27.10 2.81 62.85

Std 1.49 0.20 3.62 1.23 3.11 7.70 7.85 1.53 14.73

TABLE V

RESULTS FOR MM-JT ON GRID DATABASE. PERFORMANCE IS MEASUREDIN TERMS OFĒTotal.

E01 E02 E10 E12 E20 E21 ĒGross ĒF ine ĒPerm ĒTotal

Mean 0.94 0.01 6.33 2.40 1.72 11.83 0.91 2.86 0.51 27.52
SD

Std 1.36 0.08 3.19 1.93 2.56 5.92 1.40 0.80 1.29 10.56

Mean 1.71 0.07 5.61 2.94 2.11 15.75 2.10 3.93 3.96 38.17
GD

Std 1.70 0.33 3.79 3.22 2.81 7.78 1.87 2.24 4.38 12.33

Mean 2.43 0.06 5.44 3.45 1.96 15.29 2.44 4.08 10.95 46.07
SI

Std 2.06 0.18 3.56 2.62 2.50 7.36 2.13 2.32 7.89 13.68

TABLE VI

RESULTS FOR COR-HMM ON GRID DATABASE. PERFORMANCE IS MEASURED IN TERMS OFĒTotal.

E01 E02 E10 E12 E20 E21 ĒGross ĒF ine ĒPerm ĒTotal

Mean 1.00 0.08 8.46 0.87 2.56 19.97 1.32 3.30 16.28 53.83

Std 1.49 0.20 3.62 1.23 3.11 7.70 1.80 2.79 10.12 12.99

To demonstrate the capability of MM-JT in correctly assigning pitch trajectories to their

corresponding speakers, we compare its performance to COR-HMM on GRID using the proposed

error measurēETotal in Table V and VI. Using SD models, we achieve approximately half the

value of ĒTotal in comparison to COR-HMM. While both methods achieve similar outcomes

for ĒGross andĒF ine, major differences arise in̄EPerm andE21. GD or SI models cause a drop

in performance compared to the speaker dependent case. However, we still outperform COR-

HMM. Here, mostlyE21 and ĒPerm are the main contributors tōETotal. Using GD models, we

observe a large increase in̄EPerm for same-gender scenarios, while for different-gender scenarios,

ĒPerm is significantly lower than for COR-HMM. This indicates the beneficial influence of SD
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Fig. 6. ĒTotal of MIXMAX approach using speaker dependent models and different tracking algorithms on GRID. Each box

depicts the mean and standard deviation of a method over 9 test mixtures of a given speaker pair.

or GD models on correct speaker assignment. Fig. 5 depicts the tracking result of MM-JT

(using SD models) and COR-HMM on a test mixture of two female speakers. This demonstrates

the excellent speaker assignment of our method, provided that prior knowledge of speaker

characteristics is available.

All variants of the proposed method are compared in terms ofĒTotal only. Fig. 6 compares

the performance of various tracking methods, i.e. MM-BA, MM-ON and MM-JT, using speaker

dependent models. The performance of all three trackers is essentially equivalent. The situation is

somewhat different for gender dependent models shown in Fig. 7. For the same-gender scenario

(MA1-MA2, FE1-FE2), the parameters of the FHMM are the same in each Markov chain.

Moreover, the observation likelihood is symmetric inx1 andx2, i.e. p(y|x1, x2) = p(y|x2, x1).
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Fig. 7. ĒTotal of MIXMAX approach using gender dependent models and different tracking algorithms on GRID. Each box

depicts the mean and standard deviation of a method over 9 test mixtures of a given speaker pair.

In that case, we observe that both variants of the loopy max-sum algorithm work significantly

worse than the junction-tree algorithm. Fig. 8 compares theperformance for speaker independent

models. In this case, MM-BA and MM-ON perform worse than MM-JT for all speaker pairs.

To indicate the computation time of the methods involved, measurements were performed on

a 2.4 GHz dual core machine with 8 Gb main memory. All algorithms were implemented and

tested in Matlab. For computation of the MIXMAX likelihoodsin (4), a Matlab-MEX imple-

mentation was used. As shown in Table VII, the computationalrequirements of the MIXMAX

likelihoods depend on the particular set of GMMs involved. Acomparison with (4) reveals that

the computational complexity is mostly determined by the term C =
∑|X|

x1=1

∑|X|
x2=1 M1,x1M2,x2 ,

which depends on the actual set of GMMs involved. Table VII shows the average computation
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Fig. 8. ĒTotal of MIXMAX approach using speaker independent models and different tracking algorithms on GRID. Each

box depicts the mean and standard deviation of a method over 9test mixtures of a given speaker pair.

time for the MIXMAX likelihoods for all three training scenarios, together with the average

value ofC. Table VIII indicates the computation time for the three different tracking algorithms.

In this setting with two speakers, the time performance of JTis comparable to BA. Note however

that the computational complexity of JT is an order of magnitude larger than for BA or ON,

while the complexity of ON and BA differs only by a constant factor. Thus, for tracking more

than two speakers, the computation time for JT is expected tobe much higher than for BA or

ON.
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TABLE VII

AVERAGE COMPUTATION TIME OF MIXMAX LIKELIHOODS IN (4), SHOWN IN SECONDS PER ANALYSIS

FRAME. FOR EACH TRAINING SCENARIO, THE AVERAGE OF FACTORC IS GIVEN.

C Time [s]

SD 9.45e5 0.44

GD 6.60e6 2.71

SI 1.09e7 4.38

TABLE VIII

AVERAGE COMPUTATION TIME OF TRACKING ALGORITHMS, SHOWN IN SECONDS PER ANALYSIS

FRAME. FOR EACH METHOD, THE MEAN AND STANDARD DEVIATION IS GIVEN.

JT BA ON

Mean 0.15 0.11 0.42

Std 0.01 0.002 0.03

E. Results on Mocha-TIMIT Database

On the Mocha-TIMIT database, each example of the test set wasmixed with white Gaussian

noise at different SNR conditions, ranging from 40dB down to0dB in 10dB steps. For each

SNR condition, we evaluate the performance of the proposed methods, where the parameters

remained optimized for clean speech. Fig. 9 showsETotal for COR-HMM, MM-JT and LI-JT for

all noise conditions. Likewise, Fig. 10 shows̄ETotal for the same setup. LI-JT and MM-JT have

an equivalent performance over a range of SNR conditions down to 20dB, and both significantly

outperform COR-HMM. Both proposed interaction models showdecreasing performance for

lower SNR conditions. At 0dB SNR, MM-JT still outperforms the baseline algorithm, while

LI-JT is less robust to noise and performs worse than COR-HMM.

VI. A PPLICATION TO SINGLE-CHANNEL SOURCE SEPARATION

We demonstrate the performance of the proposed multipitch tracking algorithm when applied

to the problem of SCSS. Based on the estimated pitch trajectories, we generate a binary mask

for each speaker, and recover an estimate of the single speaker utterance by masking the mixed
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Fig. 9. ETotal of COR-HMM, speaker dependent MM-JT, and speaker dependentLI-JT approach on Mocha-TIMIT database

with background noise at different SNRs. Each box depicts the mean and standard deviation of a method over 60 male-female

mixtures.

speech spectrogramY [t, u], whereu denotes the frequency index. For more advanced SCSS

methods, we refer the interested reader to [12], [31], [45].

Specifically, given the pitch trajectory related to speakeri, f̃i[t], we synthesise for eacht the

corresponding excitation signal:

ei[t, n] =

U(ω̃i[t],fmax)
∑

u=1

sin ( u ω̃i[t] n + ∠Y [t, u] ) + ǫ[n], (11)

wheren = [1, ..., Ta] andTa = 512 is the number of samples within the synthesis frame,ω̃i[t] is

f̃i[t] in radians,∠Y [t, u] is the phase of the mixed speech spectrogram, andU(ω̃i[t], fmax) denotes

the number of harmonics corresponding toω̃i[t] up to a predefined frequencyfmax = 4kHz.
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Fig. 10. ĒTotal of COR-HMM, speaker dependent MM-JT, and speaker dependentLI-JT approach on Mocha-TIMIT database

with background noise at different SNRs. Each box depicts the mean and standard deviation of a method over 60 male-female

mixtures.

Further,ǫ[n] is a Gaussian random signal filtered by a high-pass with cutoff fmax. For unvoiced

frames (i.e.f̃i[t] = 1), we set the excitationei[n] to a white Gaussian noise sequence of length

Ta. Next, we compute the discrete Fourier transform (DFT) on each synthesis frame

Ei[t, u] = DFT{ei[t, n]} ,

and obtain the binary mask of speaker1 as

BM1[t, u] =











1, if |E1[t, u]| > |E2[t, u]|

0, otherwise.

We set the binary mask of speaker 2 to the complement, i.e. BM2 = BM1. Using the binary
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Fig. 11. Performance in terms of the target-to-masker ratio(TMR) for single-channel speech separation. Each panel shows the

results using pitch trajectories obtained by five differentmethods: RAPT denotes the case where the reference pitch trajectories

are used, SD-MM-JT, GD-MM-JT and SI-MM-JT denote the pitch trajectories obtained by the proposed MM-JT method in the

speaker dependent, gender dependent and speaker independent scenario, respectively, and COR-HMM denotes the case where

the pitch trajectories are obtained from the baseline method [1]. The leftmost panel summarizes the TMR for the same-gender

female (SGF) scenario, while the middle and rightmost panelsummarize results for the same-gender male (SGM) and different

gender (DG) scenario, respectively. Each box depicts the mean and standard deviation over all test mixtures and target/masker

combinations.

mask, we obtain the estimated spectrogram of speakeri as

S̃i[t, u] = BMi[t, u] |Y [t, u]| exp(j∠Y [t, u]).

From this, we finally re-synthesize the time domain signal.

We use the commonly used target-to-masker (TMR) measure to assess the quality of the

separation result:

TMRi =

∑

t,u S2
i [t, u]

∑

t,u(Si[t, u]− S̃i[t, u])2
, (12)

whereSi[t, u] is the clean speech spectrogram of speakeri.

We experimentally evaluate the separation performance on the GRID database in terms of

the TMR, using the same experimental setup as introduced in section V. We compare the
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results obtained by 4 different pitch extraction methods: First, we use the reference pitch

trajectories extracted directly from the single speech utterances using RAPT. Next, we use the

pitch trajectories obtained from the proposed MM-JT methodtrained for the speaker dependent,

gender dependent and speaker independent scenario (SD-MM-JT, GD-MM-JT and SI-MM-JT),

respectively. Finally, we use the pitch trajectories from the baseline COR-HMM method [1]. We

show performance results in Fig. 11. For the same-gender female (SGF) and the different-gender

(DG) scenario, separation results using SD-MM-JT achieve almost the same TMR as for the

reference pitch (RAPT). Speech separation is more difficultfor the same-gender male (SGM)

scenario, where performance drops relative to RAPT using SD-MM-JT. Results using GD-MM-

JT are significantly better than COR-HMM for the DG scenario.Note that these results correlate

well with ĒTotal and ĒPerm presented in Table V.

VII. CONCLUSION

We have presented a method for multipitch tracking based on the MIXMAX interaction model

as well as a linear interaction model. The performance of theproposed system was compared

to a state-of-the-art multipitch tracking algorithm [1]. We investigated the performance of the

proposed method using speaker dependent, gender dependentand speaker independent models,

and evaluated the robustness of the proposed method to whitenoise at various SNR conditions.

Moreover, we examined the performance in terms of correct speaker assignment, and proposed a

new error measure for this purpose. Additionally, we compared the performance using different

tracking algorithms, and proposed a loopy max-sum scheduling mechanism for online tracking.

Finally, we evaluated the performance of single-channel speech separation based on the estimated

pitch trajectories.

For speaker dependent models, the proposed method is able toreduce the error ratēETotal

on average by 51% relative to the baseline method [1]. Moreover, the proposed method signif-

icantly improves the correct assignment of pitch trajectories to corresponding speakers, which

is important for the task of SCSS. Using gender dependent or speaker independent models, we

experience a performance drop relative to speaker dependent models. However, the resulting error

rate still outperforms the baseline algorithm. The MIXMAX interaction model achieves a better

robustness to additive white Gaussian noise than the linearinteraction model. The performance

with different tracking methods is mostly identical for thespeaker dependent case and when using
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gender dependent models applied to the different gender scenario. In all other cases, the exact

junction tree algorithm clearly outperforms the other tracking variants based on approximate

inference.

The advantage of the proposed method is the possibility to integrate a-priori knowledge

about speaker characteristics into the statistical model.We have shown that speaker dependent

models clearly improve the correct speaker assignment of pitch trajectories, and demonstrated

the resulting performance gain for SCSS. The usage of interaction models allows the modelling

of all involved speakers independent of each other. Future work will investigate methods to

adapt speaker models during processing, i.e. starting withspeaker independent models, we will

infer speaker relevant information and use this information to adapt towards speaker dependent

models.

APPENDIX

DERIVATION OF GMM BASED OBSERVATION PROBABILITY USING THEMIXMAX MODEL

Given the density of two vector valued, independent random variables,S1 andS2, we seek to

derive the density ofY = max(S1, S2). First, it is easy to see that the cumulative distribution

of Y , ΦY (y), is given as

ΦY (y) = p (S1,1 ≤ y1, ..., S1,D ≤ yD, S2,1 ≤ y1, ..., S2,D ≤ yD)

=

∫ y1

−∞

· · ·

∫ yD

−∞

∫ y1

−∞

· · ·

∫ yD

−∞

p (s1,1, ..., s1,D, s2,1, ..., s2,D) ds1,1 · · · ds1,D ds2,1 · · · ds2,D,

whereSi,d is thedth element ofSi. Due to the independence ofS1 andS2, we have that

ΦY (y) = ΦS1(y)ΦS2(y),

where ΦSi
(·) denotes the cumulative distribution with respect toSi. Making the conditional

dependency ofSi on pitch statexi explicit, and using the definition of the GMM in (3), we get

ΦSi
(y|xi) =

Mi,xi
∑

m=1

αm
i,xi

D
∏

d=1

Φ
(

yd|θ
m,d
i,xi

)

,
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whereΦ(y|θ) =
∫ y

−∞
N (x|θ)dx is the univariate cumulative normal distribution. We now obtain

the conditional density ofY by partial derivation of its cumulative distribution:

p(y|x1, x2) =
∂D

∏

d ∂yd

ΦY (y|x1, x2) =
∂D

∏

d ∂yd

ΦS1(y|x1)ΦS2(y|x2)

=
∂D

∏

d ∂yd





M1,x1
∑

m=1

αm
1,x1

D
∏

d=1

Φ
(

yd|θ
m,d
1,x1

)









M2,x2
∑

n=1

αn
2,x2

D
∏

d=1

Φ
(

yd|θ
n,d
2,x2

)





=
∂D

∏

d ∂yd

M1,x1
∑

m=1

M2,x2
∑

n=1

αm
1,x1

αn
2,x2

D
∏

d=1

Φ
(

yd|θ
m,d
1,x1

)

Φ
(

yd|θ
n,d
2,x2

)

=

M1,x1
∑

m=1

M2,x2
∑

n=1

αm
1,x1

αn
2,x2

D
∏

d=1

{

N
(

yd|θ
m,d
1,x1

)

Φ
(

yd|θ
n,d
2,x2

)

+ Φ
(

yd|θ
m,d
1,x1

)

N
(

yd|θ
n,d
2,x2

)}

.
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