

Hoher Anspruch auf kleinem Raum: Tieffrequente Herausforderungen bei der akustischen Sanierung eines Aufnahmeraumes

Jan Godde, Valentin Huber, Jamilla Balint

TU Graz - Signal Processing and Speech Communication Laboratory

22.03.2018

Überblick

Hintergrund

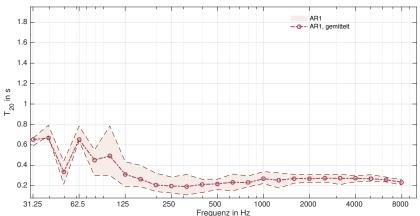
- akustische Sanierung eines Studio-Aufnahmeraumes (AR2) ohne Umbau der Primärstruktur
- ► Grundfläche 25 m², Volumen 70 m³
- Orientierung an Akustik und Optik eines bestehenden Aufnahmeraumes (AR1)

Messungen und Simulationen

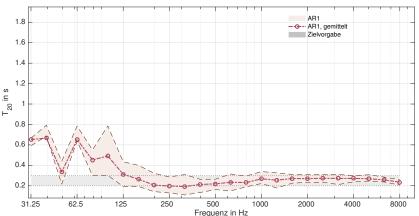
Ausführung und Ergebnisse

Hörbeispiele

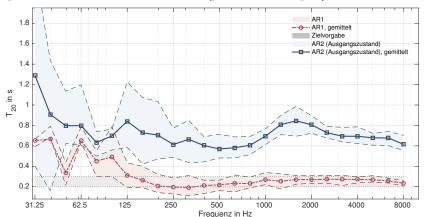
Aufnahmeraum 1 (AR1)


Aufnahmeraum 2 (AR2) vor Umbau

Ausgangszustand und Zielsetzung


gemessene Nachhallzeiten T_{20} (je 20 Messungen)

Ausgangszustand und Zielsetzung


gemessene Nachhallzeiten T_{20} (je 20 Messungen)

Ausgangszustand und Zielsetzung

gemessene Nachhallzeiten T_{20} (je 20 Messungen)

Herausforderungen bei kleinen Räumen für $f < 125~{\rm Hz}$

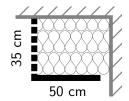
- geringe Modendichte (isoliert auftretende Raummoden)
 - \rightarrow "Dröhnen"
 - ightarrow schlechte Durchsichtigkeit (Verdeckung hoher Frequenzen durch tiefe)
 - ightarrow starke Ortsabhängigkeit
 - $\rightarrow \mathsf{Klangverf\"{a}rbung}$
- Absorbervolumen bei Absorption tieffrequenten Schalls

Ziele

- Bedämpfung tieffrequenter Raummoden
- ▶ angestrebt: $T_{20} \approx 0.25$ s für $f \in [31.25, 8000]$ Hz

Akustische Maßnahmen

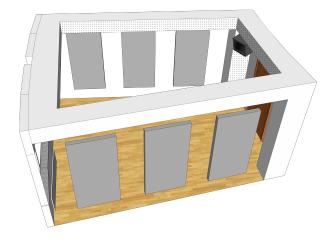
gewählte Optimierungsschritte


- Grunddämpfung durch Kantenabsorber (KA)
- Verbundplattenresonatoren (VPR)
- spezielle Deckenkonstruktion
- Akustikvorhänge

Akustische Maßnahmen

gewählte Optimierungsschritte

- Grunddämpfung durch Kantenabsorber (KA)
- Verbundplattenresonatoren (VPR)
- spezielle Deckenkonstruktion
- Akustikvorhänge



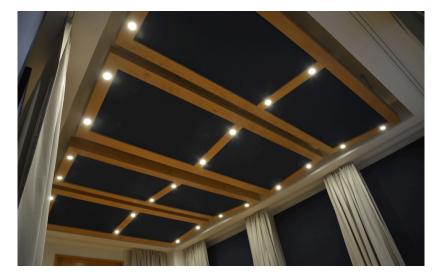
Kantenabsorber (KA)

- mit Dämmwolle gefüllte Gipskartonkoffer in den Raumecken, Schallöffnung z.B. durch Perforation
- erhöhter Wirkungsgrad durch hohe Energiedichte in den Raumecken/-kanten

3D-Modell (AR2)

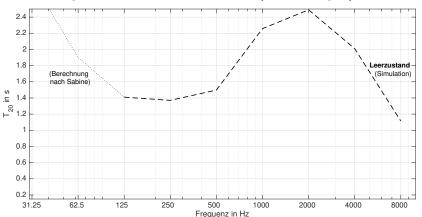
KA und VPR

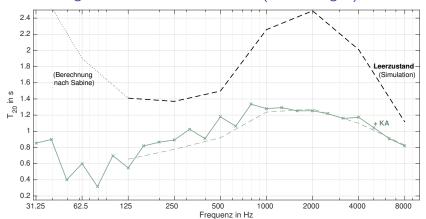
KA und VPR

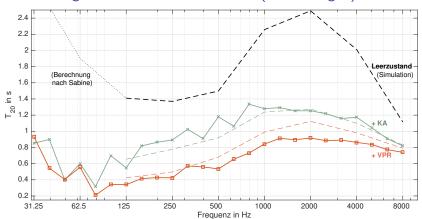


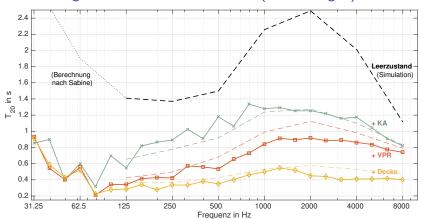
VPR und Deckenelemente

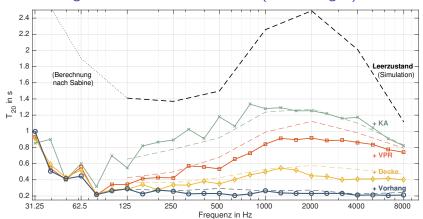
Schrägstellung der Deckenelemente, Vorhänge

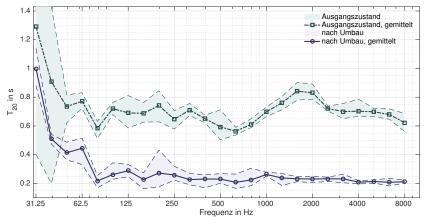


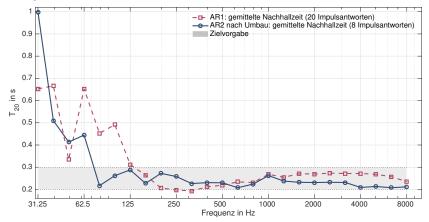

Aufnahmeraum 2 (AR2) nach Umbau











AR2 vor/nach dem Umbau (8 Messungen)

Vergleich beider Studioräume nach dem Umbau

Klangbeispiele

https://www.spsc.tugraz.at/student_projects/raumakustische-planung-eines-aufnahmeraumes