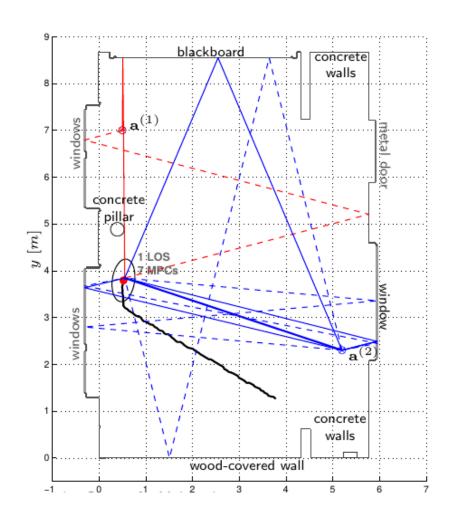


Using DecaWave UWB Transceivers for High-accuracy Multipath-assisted Indoor Positioning

Josef Kulmer, Stefan Hinteregger, Bernhard Grosswindhager, Michael Rath, Mustafa S. Bakr, Erik Leitinger, and Klaus Witrisal

Multipath-assisted Indoor Navigation and Tracking

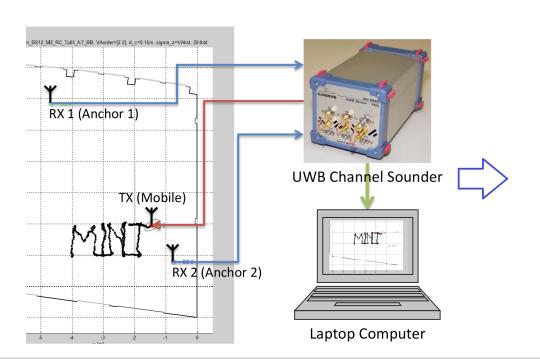

Idea

- Sensor nodes with known position at a and unknown positions at p
- estimate agent position using range information in channel impulse response from reflected multipath

$$r(t) = \sum_{k} \alpha_k s(t - \tau_k)$$

Benefits:

- less anchor nodes
- more redundancy, i.e. robustness in NLOS
- higher accuracy



Ultrawide-band measurements (1)

Replace lab-grade measurement equipment by low-cost hardware Decawave DW1000

- Implemented in various platforms
- Low price (25€)

Decawave EVK1000

Sequitur: DW1000 + Raspberry Pi

Pozyx: DW1000 + Arduino

Ultrawide-band measurements (2)

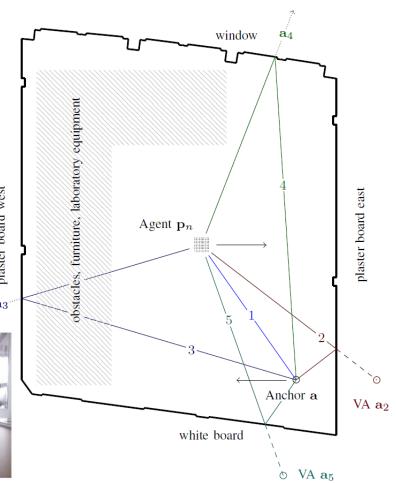
Capabilities of the DecaWave DW1000

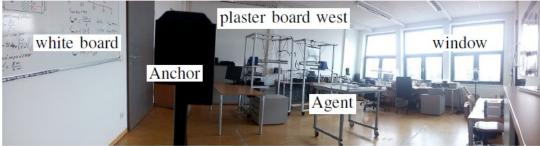
- Supports various IEEE 802.15.4 (2001) Channels
- Ranging accuracy of 10 cm
- Internal buffer with measured channel impulse response

Research question

can we perform multipath-assisted indoor navigation on low-cost UWB transmitters or will it remain purely academic?

Analysis of the DecaWave DW1000

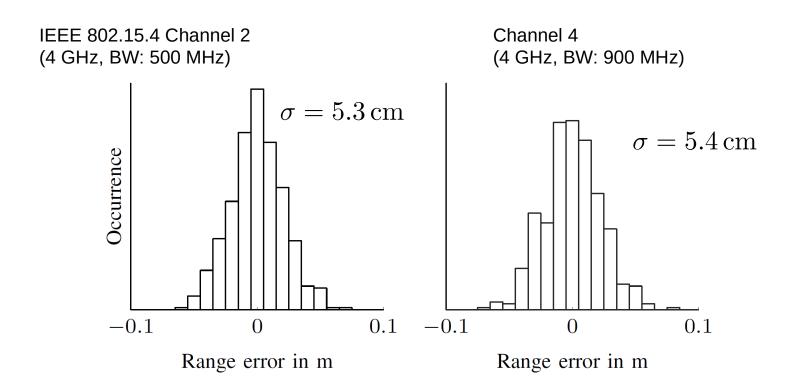

- Synchronization accuracy between nodes
- Analysis of the pulse shape in the received signal in time and frequency domain
- Comparison to lab-grade correlative channel sounder



Analysis of the DecaWave DW1000 (1)

Measurement Setup

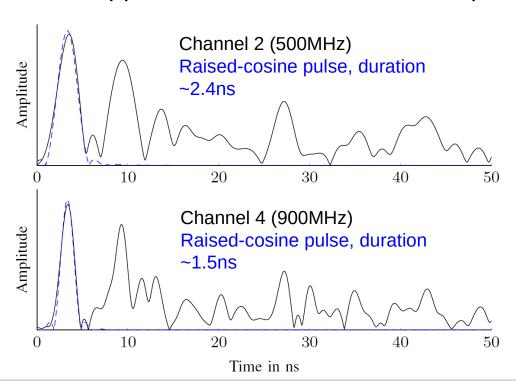
- Measurements with both DW1000 and Ilmsens Channel Sounder
- Analysis of selected (blocked, overlapping) MPCs

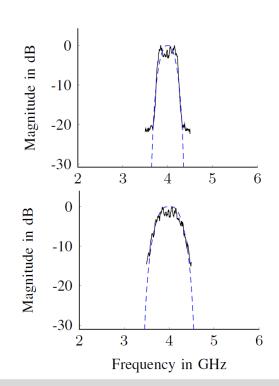


Analysis of the DecaWave DW1000 (2)

Synchronization accuracy between nodes

- Nodes synchronize each other by exchanging timestamps
- lacktriangle Employ timestamps for ranging $c\,t_{
 m DW}$





Analysis of the DecaWave DW1000 (3)

Analysis of pulse shape of measured signal by DW1000

- Pulse shape s(t) not standardized
- Depends on RF-filters, antenna transfer function
- Approximation as raised-cosine pulse

Comparison with laboratory equipment IlmSense Channel Sounder

Evaluation of

- The ability to resolve multipath components (MPCs)
- The impact of clock synchronization

Reliability of MPCs

- Signal-to-interference-plus-noise ratio SINR of selected MPCs
- SINR relates MPC path energy to interfering diffuse multipath and AWGN

Comparison with laboratory equipment

SINR values in dB

Aligned according to (a) DW1000
$$r_{(a)}(t) = r(t - t_{LOS} + t_{DW})$$
 or (b) true range $r_{(b)}(t) = r(t - t_{LOS} + \|\mathbf{p} - \mathbf{a}\|/c)$

	DecaWave DW1000				Channel Coundar		
MPC	Channel 2		Channel 4		Channel Sounder		A 1:-+
	a)	b)	a)	b)	$T_{ m p}=2.4{ m ns}$	$T_{ m p}=1.5{ m ns}$	Avg. distance
LOS	19.6	19.9	21.5	22.4	21.9	23.3	3.3 m
plaster board east	3.2	3.7	-2.7	-2.2	-0.2	4.6	$4.4\mathrm{m}$
plaster board west	-4.1	-2.3	nan	nan	-0.7	-2.7	$9.5\mathrm{m}$
white board	8.6	8.6	11.5	11.8	9.9	13.2	$4.9\mathrm{m}$
window	7.0	8.3	5.8	6.7	1.8	3.3	$10.5\mathrm{m}$

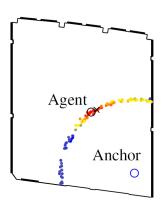
- DW1000 and Channel Sounder reach similar levels
- Synchronization accuracy can be neglected $(\sigma = 5 \, \mathrm{cm} \ll 45 \, \mathrm{cm} = c T_{\mathrm{p}})$
- LOS reaches high values due to temporal isolation
- White board and window are still promising for positioning

Single-anchor indoor positioning

DW1000 measures range between nodes $t_{
m DW}$ and CIR ${f r}$

AWGN model
$$\mathbf{r} = \sum_k \alpha_k \mathbf{s}(\tau_k) + \mathbf{w} = \mathbf{S}(\boldsymbol{\tau})\boldsymbol{\alpha} + \mathbf{w}$$

Log likelihood $\ln p(\mathbf{r}|\boldsymbol{\alpha}, \boldsymbol{\tau}) \propto -\|\mathbf{r} - \mathbf{S}(\boldsymbol{\tau})\boldsymbol{\alpha}\|^2$

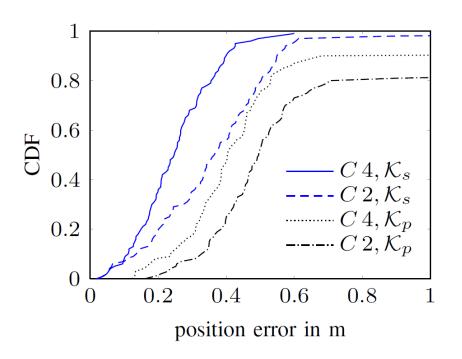

Using geometric floorplan model $\hat{\mathbf{p}} = \operatorname{argmax}_{\mathbf{p} \in \mathcal{P}} p(\mathbf{r}|\mathbf{p})$

Monte Carlo sampling on a circle around the anchor a

$$d^{(i)} \sim \mathcal{N}(ct_{\text{DW}}, \sigma^2)$$

$$\phi^{(i)} \sim \mathcal{U}(0, \pi)$$

$$\mathbf{p}^{(i)} = [d^{(i)}\cos(\phi^{(i)}), d^{(i)}\sin(\phi^{(i)})]^T + \mathbf{a}$$



Positioning performance

Position estimation at 100 different positions

Channel 4 (900 MHz) outperforms Channel 2 (500 MHz)

Consider MPCs from floorplan

Consider MPCs with high SINR

Improves robustness

Summary

Reflected signals can be approximated by raised-cosine pulse Synchronization errors are neglectable Achieved SINR values are comparable to measurement equipment

Reflected MPCs can be used for positioning

- Demonstration of single-anchor positioning using capabilities of the DW1000
- Higher bandwidth increases accuracy
- Data and implementation are provided online

http://www2.spsc.tugraz.at/people/s0773094/dw