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Abstract

Wireless localization has become a key technology for cooperative
agent networks. However, for many applications, it is still illusive to
reach the desired level of accuracy and robustness, especially in indoor
environments which are characterized by harsh multipath propagation.
In this work we introduce a cooperative low-complexity algorithm that
utilizes multipath components for localization instead of suffering from
them. The algorithm uses two types of measurements: (i) bistatic mea-
surements between agents and (ii) monostatic (bat-like) measurements by
the individual agents. Simulations that use data generated from a realistic
channel model, show the applicability of the methodology and the high
level of accuracy that can be reached.
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1 Introduction

Location awareness is a key component of many future wireless applications.
However, achieving the needed level of accuracy is still elusive in many cases,
especially in indoor environments which are characterized by harsh multipath
conditions. Promising candidate systems thus either use sensing technologies
that provide remedies against multipath or they fuse information from multiple
information sources [10, 1].

In Multipath-assisted indoor navigation and tracking (MINT) [6, 4] mul-
tipath components (MPCs) can be associated to the local geometry using a
known floor plan. In this way, MPCs can be seen as signals from additional
(virtual) anchors (VAs). Ultra-wideband (UWB) signals are used because of
their superior time resolution facilitating the separation of MPCs. Hence, ad-
ditional position-related information is exploited that is contained in the radio
signals. All other—not geometrically modelled—propagation effects included in
the signals constitute interference to the useful position-related information and
are called diffuse multipath (DM) [8]. Insight on the position-related informa-
tion that is conveyed in the signals can be gained by an analysis of performance
bounds, such as the Cramér-Rao lower bound (CRLB) [4]. In [4], the CRLB for
cooperative MINT was derived using bistatic measurements between agents and
monostatic measurements from an agent itself. The same measurement model
will be used in this work. Cooperation between agents is another method to
increase the amount of available information [11] and thus to reduce the local-
ization outage. In this work, we present a low-complexity variant of [2] that
is based on data-association (DA) and extended Kalman filtering (EKF) [7].
The method relies on the same factor graph as presented in [2], but in contrast
it just uses the extracted MPC delays and complex path amplitudes1 instead
of the complete received signals. The key contributions of this paper are (i)
incorporate VAs into a joint state space with the agents, and (ii) formulate the
cooperative algorithm that uses DA of MPC delays with according VAs and an
EKF for tracking the joint state of the agents and the according VAs.

2 Problem Formulation

We assume M agents at positions p
(m)
1 with m ∈ Nm = {1, 2, . . . ,M}, which co-

operate with one another. As outlined in the introduction, every agent conducts
a monostatic measurement, meaning it emits a pulse and receives the multipath
signal reflected by the environment, and conventional bistatic measurements
with all other agents and the fixed anchors. All bistatic and monostatic mea-
surements are distributed such that every agent is able to exploit information
from any of its received and/or transmitted signals.

Fig. 1 illustrates the geometric model for multipath-assisted positioning. A

signal exchanged between the agents m′ and m at positions p
(m′)
1 and p

(m)
1 ,

respectively, contains specular reflections at the room walls, indicated by the

black lines. These reflections can be modeled geometrically using VAs p
(m′)
k ,

mirror images of the anchor w.r.t. walls that can be computed from the floor

1These are used to compute online, the reliability measure of the MPCs in form a signal-
to-interference-plus-noise-ratio (SINR) that is used to compute the according MPC’s delay
uncertainty.
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Figure 1: Illustration of multipath geometry using VAs for (i) bistatic transmis-
sions (blue) between an agents and for (ii) a monostatic measurement (gray) by
an agent.

plan [6]. We call this the bistatic setup. If the agents are equipped accordingly,
they can use monostatic measurements, indicated by the gray lines. Here, the

node at p
(m′)
k acts as anchor for itself with its own set of VAs.

2.1 Signal Model

In this Section, we simplify the setup—for the ease of readability—to a single
(fixed) anchor located at position p1 ∈ R2 and one agent at position p ∈ R2.
Note that two-dimensional position coordinates are used throughout the paper,
for the sake of simplicity. A baseband UWB signal s(t) is exchanged between
the anchor and the agent. The corresponding received signal is modeled as [4]

r(t) =

K∑
k=1

αks(t− τk) + (s ∗ ν)(t) + w(t) (1)

where {αk} and {τk} are the complex amplitudes and delays of the deterministic
MPCs, respectively. We model these delays by VAs at positions pk ∈ R2,
yielding τk = 1

c‖p − pk‖ = 1
cd(pk,p), with k = 1 . . .K, where c is the speed

of light and d(·) is the Euclidean distance. K is equivalent to the number of
visible VAs at the agent position p. We assume the energy of s(t) is normalized
to one.

The DM (s ∗ ν)(t) is modeled as a zero-mean Gaussian random process
which is non-stationary in the delay domain and colored due to the spec-
trum of s(t). For DM we assume uncorrelated scattering along the delay axis
τ , hence the auto-correlation function (ACF) of ν(t) is given by Kν(τ, u) =
Eν {ν(τ)[ν(u)]∗} = Sν(τ)δ(τ − u), where Sν(τ) is the PDP of DM at the agent
position p. The DM process is assumed to be quasi-stationary in the spatial
domain, which means that Sν(τ) does not change in the vicinity of position p
[4]. Finally, w(t) denotes an additive white Gaussian noise (AWGN) process
with double-sided power spectral density (PSD) of N0/2.
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2.2 Channel Estimation

The arrival time estimation τ̂
(m,m′)
k,n at time step n between two agents at posi-

tions p
(m)
1,n and p

(m′)
1,n , where m,m′ ∈ Nm, is realized as an iterative least-squares

approximation of the received signal [7]. The according path amplitudes α̂
(m,m′)
k,n

are estimated using a projection of the received signal r
(m,m′)
n (t) onto a unit-

energy pulse s(t − τ̂ (m,m′)
k,n ). The number of estimated MPCs K̂

(m,m′)
n should

be chosen according to the number of expected specular paths in an environ-

ment. The finite set of measured delays is written as Z(m)
n =

⋃
m′ Z

(m,m′)
n =⋃

m′{d̂
(m,m′)
k,n }K̂

(m,m′)
n

k=1 , where d̂
(m,m′)
k,n = cτ̂

(m,m′)
k,n .

2.3 Data Association (DA)

The set of expected MPC delays D(m,m′)
n = {d(p

(m′)
n,k ,p

(m)
1,n ) : p

(m,m′)
n,k ∈ A(m,m′)

n }
is computed from the distances of each VA in A(m,m′)

n to the predicted position

p
(m)
1,n of agent m at time step n. As D(m,m′)

n and the set of measured delays

Z(m,m′)
n are sets of usually different cardinalities, i.e. |Z(m,m′)

n | = K̂
(m,m′)
n 6=

|D(m,m′)
n | = K

(m,m′)
n , no conventional distance measure is defined and therefore

there is no straightforward way of an association. We employ a well-known
multi- target miss-distance, the optimal sub-pattern assignment (OSPA) metric
[9]. As described in [7, 3], after the DA was applied for all agents, the following
union sets are defined: (i) the set of associated discovered (and optionally a-

priori known) VAsA(m)
n,ass =

⋃
m′ A

(m,m′)
n,ass , (ii) the corresponding set of associated

measurements Z(m)
timestepsym,ass =

⋃
m′ Z

(m,m′)
n,ass .

3 State Space and Measurement Model

The state dynamics are characterized by a linear, constant-velocity motion

model. Each agent x
(m)
n is described by its position p

(m)
1,n and velocity v

(m)
1,n

according to x
(m)
n = [(p1,n

(m))T, (v1,n
(m))T]T. The position of the agent is

mirrored at a each wall segment in order to obtain the positions of the corre-

sponding VAs p
(m)
k,n . The orientation of the wall segments determine the relation

between the movement gradients of the agent and the corresponding VAs. We

describe this relation by introducing a VA transition matrix P
(m)
k (cf. [4]). The

state space model for agent m is thus characterized by

x̃(m)
n =

[
F 04×2Kn

02Kn×2 P(m) I2Kn×2Kn

]
︸ ︷︷ ︸

F̃(m)

x̃
(m)
n−1 +

[
G

02Kn×2

]
︸ ︷︷ ︸

G̃(m)

na,n, (2)

with

F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 , G =


∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T

 ,
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x̃
(m)
n = [xT(m)

n ,pT(m)
2,n , ...p

T(m)
K,n]T and P(m) = [PT

2
(m), . . . ,P

T(m)
Kn

]T with dimen-
sions (2Kn×2). Under the assumption of independent movement of the agents,
the motion model finally results in

x̃
(1)
n

...

x̃
(M)
n


︸ ︷︷ ︸

x̂n

=

F̃
(1) 0

. . .

0 F̃(M)



x̃

(1)
n−1
...

x̃
(M)
n−1


︸ ︷︷ ︸

x̃n−1

+

 G̃
(1)
n

G̃
(M)
n

na,n. (3)

The according linearized measurement model is defined as
z̃

(1)
n

...

z̃
(M)
n

 =


H̃

(1)
n 0

. . .

0 H̃
(M)
n



x̃

(1)
n

...

x̃
(M)
n

+ ñz,n. (4)

where z̃
(m)
n stacks the monostatic measurements from the m-th agent and the

bistatic measurements to all other agents. The stack vector ñz,n contains the ac-
cording measurement noise with covariance matrix Rn described in [7]. The lin-

earized column-wise stacked measurement matrices H̃
(m)
n = [(H̃

(η=1,m)
n )T, . . . ,

(H̃
(η=M,m)
n )T]T are described in (5), with m, η ∈ Nm and m 6= η. The matri-

ces H
(η,η,m)
ξ,µ,n = [

∂d(p(η)
µ,n,p

(m)
1,n )

∂x
(η)
ξ,n

,
∂d(p(η)

µ,n,p
(m)
1,n )

∂y
(η)
ξ,n

] define the derivatives of the distance

measurements w.r.t. the x-and y-position coordinates. The upper-left sub-
block of (5) holds the derivatives of the monostatic measurements w.r.t. the
m-th agent position. The upper diagonal sub-block holds the according deriva-
tives w.r.t. to the monostatic VA positions of the m-th agent. The lower-left
sub-block holds derivatives of the bistatic measurement equations to all other
agent positions and according VA positions (η = 1 . . .M and m 6= η) w.r.t. the
m-th agent position. The lower-right diagonal sub-block holds the equivalent
derivatives w.r.t. to the according bistatic VA positions.

H̃(η,m)
n =



H
(m,m,m)
1,2,n 0 0 H

(m,m,m)
2,2,n . . . 0 . . . 0

...
...

...
...

...
...

...
...

H
(m,m,m)
1,Kn,n

0 0 0 . . . H
(m,m,m)
Kn,Kn,n

. . . 0

H
(η,m,m)
1,1,n 0 . . . 0 . . . 0

...
...

...
...

...
...

...
...

H
(η,m,m)
1,Kn,n

0 0 0 . . . 0 . . . H
(η,η,m)
Kn,Kn,n


(5)

4 Results

We evaluate the performance of the proposed algorithm in terms of localization
error and computational time using synthetic data in a two-dimensional space.
The transmit signal consists of a raised-cosine pulse with a roll-off factor of
R = 0.6, a pulse duration of Tp = 0.5 ns and unit energy. The received signals
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of the monostatic and bistatic measurements are modeled according to (1). Each
reflection attenuates the pulse by 3 dB. The free-space loss is modeled according
to Friis’ transmission equation. The parameters of the DM are set according
to [4] and the power of the additive white noise is set to N0 = 2 · 10−16 W/Hz.
In order to achieve a fair comparison to the proposed method in [2] we choose
the same parameter setup and simulation scenario as shown in Figure 2. Three
agents m move independently along trajectories under partly non-line-of-sight
conditions where we assume a given start position. Figure 2 shows an example
of the estimated agent positions p̂1,n, p̂2,n and p̂3,n using the proposed EKF-
based algorithm are indicated for every 5-th position. At each time step n the
agents run monostatic and bistatic measurements to the neighboring agents.
The utilized likelihood function of [2, eq. (8)] simplifies the proposed system
model (Sec. III in [2]). We accounted this by changing the likelihood function
to eq. (7) of [2]. Further, [2] undermines the uncertainty of the neighboring
beliefs by reducing the size of the neighboring particles to the mean value (see
Sec. V-B of [2]). We omit this simplification.

The maximum number of extracted MPCs is limited to K
(.,.)
n = 12,∀n (see

2.2). The initial position of each VA p
(m)
k,n as well as the corresponding VA

transition matrix P
(m)
k are calculated in advance. Figure 3 illustrates the cu-

mulative distribution function (CDF) of the localization error of the proposed
algorithm (CoMINT EKF) compared to [2] of ten trajectory realizations—each
evaluated with 50 monte carlo runs. The comparison reveals the strong influence
on performance of localization error and computational demand [2] regarding its
implementation scheme of message passing (i.e. particle or parametric message
representation and scheduling). Choosing a sample-based message representa-
tion the localization error reduces with increasing number of particles on the
cost of computational complexity. Denoting N as the number of particles rep-
resenting the message passing scheme [2], faces a complexity of O(MN2) [5].
The proposed method has a complexity of O(M2K3

n) determined by the data
association stage [9]. Since the number of particles N is much higher compared

to the number of extracted MPC K
(.,.)
n the proposed method outperforms [2]

in terms of computational complexity. We proof this claim by comparison of
the average computational time for localization scaled to the proposed method.
Depending on the number of particles the average computational time of the
proposed method speeds up by a factor of approximately 217, 756 and 2355 for
100, 250 and 500 particles, respectively.
The gain in terms of computational time is established by the assumption of
Gaussian distance errors. Figure 3 indicates the influence of this assumption by
comparison to [2] with different number of particles of 100, 250 and 500. The
proposed method reaches a performance comparable to [2] with a number of
particles from 100− 250 where 90% of the errors are located within 2 cm.

5 Conclusions

We have presented a new low-complexity algorithm for cooperative localiza-
tion of agents using multipath information. The simulation results show that
bistatic as well as monostatic measurements contribute a significant amount
of information for localizing the agents with a high level of accuracy. The
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Figure 2: Simulation scenario as in [2] with three agents moving along different
trajectories.

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

xaxis

y
a
x
is

 

 

EKF (proposed method)

Froehle2013, 100 particles

Froehle2013, 250 particles

Froehle2013, 500 particles

Figure 3: CDF of the localization error of the proposed algorithm (CoMINT
EKF) (blue) compared to [2] with a different size of 500 (gray), 250 (red) and
100 (black) particles of each agent.
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simulation results pinpoint also the robustness, i.e. low level of localization
outages, of the cooperative algorithm when multipath information is used from
both types of measurements. The most important attained fact it that the
proposed low-complexity algorithm reaches almost the same performance than
the particle-based method using several orders of magnitude less computational
resources.
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