

1

Cooperative Multipath-assisted Navigation and Tracking: A Low-Complexity Approach

Josef Kulmer, Erik Leitinger, Paul Meissner, and Klaus Witrisal

Graz University of Technology, Austria

{kulmer,erik.leitinger,paul.meissner,witrisal}@tugraz.at

September 24, 2015

OUTLINE

Cooperative indoor localization

Implementation

Evaluation

Conclusion

COOPERATIVE INDOOR LOCALIZATION

Idea:

- Several mobiles locate their position
- No anchor nodes
- Floor plan is provided

Measurement: UWB channel

- Mono-static measurement: local non-cooperative
- Bi-static measurement: cooperative

Literature

- Cooperative mobiles with one anchor¹
- Cooperative mobiles without anchor²

¹S. Van de Velde et al.: "Cooperative Multipath-Aided Indoor Localization," IEEE Wireless Communications and Networking Conference: Mobile and Wireless Networks, 2012.

²M. Froehle et al.: "Cooperative Multipath-Assisted Indoor Navigation and Tracking (Co-MINT) Using UWB Signals," IEEE International Conference on Communications (ICC), 2013.

SIGNAL & CHANNEL MODEL

³K. Witrisal, P. Meissner: "Performance Bounds for Multipath-assisted Indoor Navigation and Tracking (MINT)," IEEE International Conference on Communications (ICC), 2012.

SIGNAL & CHANNEL MODEL

Multipath propagation

 Multipath propagation of mobile p^(m) by modeling Virtual Anchors (VA) p^(m)_k

- Mono-static measurement (red): local non-cooperative
- Bi-static measurement (blue): cooperative

LIKELIHOOD FUNCTION

- Mono-static measurement
- Bi-static measurement

FACTOR GRAPH – For 3 Mobile Nodes Time: k = 0 k = 1 ...

- \blacktriangleright State: \mathbf{x}_k^i
- Prior: $f(\mathbf{x}_0^i) = p(\mathbf{x}_0^i)$
- Motion model: $\begin{array}{l} h(\mathbf{x}_{k-1}^i, \mathbf{x}_k^i) = \\ p(\mathbf{x}_k^i | \mathbf{x}_{k-1}^i) \end{array}$
- Mono-static: $g(\mathbf{x}_k^i) = p(\mathbf{z}_{\text{self},k}^i | \mathbf{x}_k^i)$
- ► Bi-static: $\phi_{i,j}(\mathbf{x}_k^i, \mathbf{x}_k^j) = p(\mathbf{z}_{\text{rel},k}^i | \mathbf{x}_k^i, \mathbf{x}_k^j)$

CO-MINT IMPLEMENTATION

Challenges

- Nonlinear relation of distance measurements and position
- Non-Gaussian distribution of the position error
- ▶ Particle Filters: high complexity $\mathcal{O}(N^2)$ for N particles
- Remedy: approximate neighbors by their sample mean⁴

Proposed method

- Estimate positions of mobiles with Extended Kalman Filter
- Joint state of mobile position and corresponding VAs
- Combine Mono-static and Bi-static measurements

⁴M. Froehle et al.: "Cooperative Multipath-Assisted Indoor Navigation and Tracking (Co-MINT) Using UWB Signals," IEEE International Conference on Communications (ICC), 2013.

CO-MINT IMPLEMENTATION

Initialization

- Compute VA set for each mobile dependent on floor plan
- Initialize Kalman state
 - Stack positions of mobiles and corresponding VAs
- Extended Kalman Filter EKF
 - Prediction step
 - Update step

CO-MINT IMPLEMENTATION

- Prediction step
 - Constant velocity motion model
 - VA movement dependent on the floor plan

IMPLEMENTATION

- Update Step
 - Perform measurements of each mobile
 - Estimate arrival time of multipath components
 - Compute expected delays given the virtual anchors
 - Data Association of estimated and expected set of MPCs
 - Perform EKF update step

TU Gran

IMPLEMENTATION

- Update Step
 - Perform measurements of each mobile
 - Estimate arrival time of multipath components
 - Compute expected delays given the virtual anchors
 - Data Association of estimated and expected set of MPCs
 - Perform EKF update step

IMPLEMENTATION

- Update Step
 - Perform measurements of each mobile
 - Estimate arrival time of multipath components
 - Compute expected delays given the virtual anchors
 - Data Association of estimated and expected set of MPCs
 - Perform EKF update step

EXTENDED KALMAN FILTER EKF

Benefits

- Low Complexity
 - Data Association $\mathcal{O}(M^2K^3)$
 - $M \sim 2$ (#mobiles), $K \sim 10$ (#assigned measurements)
 - ▶ PF: $\mathcal{O}(MN^2)$
 - ▶ $N \sim 500$ (#particles)

Drawbacks

- Reduced positioning performance
 - Linearization of measurement equations
 - Non-Gaussian positioning error

EVALUATION

Setup

- L-shaped room with non line of sight conditions
- Three mobiles
- Pulse bandwith 2 GHz (15 cm)
- VAs up to 2nd order
- Perfect initialization

EVALUATION

Execution time - real time factor

- PF100 / EKF: 200
- PF250 / EKF: 750
- ▶ PF500 / EKF: 2300

PRELIMINARY RESULTS

Two mobiles, UWB 2 GHz, transmitted pulse: raised cosine

CONCLUSION AND FUTURE WORK

Conclusion

- Cooperative Localization using multipath components
- Reduced complexity
- Preserved robustness

Future work

- Consider uncertainty of floor plan
- Distributed localization
- Further discussion on Mono- and Bi-static measurements