

Cooperative indoor localization using multipath channel information

Josef Kulmer, Erik Leitinger, Paul Meissner, Stefan Hinteregger, and Klaus Witrisal

Graz, University of Technology

Barcelona, 2016 June 01

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - ぐくぐ

COOPERATIVE INDOOR LOCALIZATION USING MULTI-PATH CHANNEL INFORMATION

Motivation

- indoor positioning requires infrastructure, e.g. physical anchors
- omit physical anchors by employment of multipath propagation model and cooperation among agents
- reflective surfaces (e.g. wall segments, windows, ...) act as physical anchors

Contribution

- indoor localization exploiting multipath propagation of radio frequency channels
- use floorplan information only

CONTENTS

- 1. Signal and multipath propagation model
- 2. Proposed algorithm
- 3. Results
 - Proof-of-concept
 - Sensitivity analysis
- 4. Conclusion

<ロ> < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SIGNAL & CHANNEL MODEL

Received signal¹

SIGNAL & CHANNEL MODEL

Received signal²

$$r(t) = \sum_{k=1}^{K} \alpha_k s(t - \tau_k) + \boldsymbol{\nu}(t) * \boldsymbol{s}(t) + \boldsymbol{w}(t)$$

with delay τ_k denoted as

$$\tau_k = \frac{1}{c} \left\| \mathbf{p}^{(m)} - \mathbf{p}_k^{(m')} \right\|$$

with agent positions $\mathbf{p}^{(m)}$ and virtual anchor positions $\mathbf{p}_k^{(m')}$

²K. Witrisal, P. Meissner: 'Performance Bounds for Multipath-assisted Indoor Navigation and Tracking (MINT),' IEEE International Conference on Communications (ICC), 2012.

SIGNAL & CHANNEL MODEL

Measurement function

$$\tau_k = \frac{1}{c} \left\| \mathbf{p}^{(m)} - \mathbf{p}_k^{(m')} \right\|$$

Multipath propagation model

³

³ J. Kulmer, E. Leitinger, P. Meissner, K. Witrisal: Cooperative Multipath-Assisted Navigation and Tracking: A Low-Complexity Approach, Future Access Enablers of Ubiquitous and Intelligent Infrastructures. Springer 2015 < □ > < □ > < □ > < □ > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < = > < =

MULTIPATH PROPAGATION MODEL

Position uncertainty and velocity of agent m

- agent *m*'s position described by $\mathcal{N}(\mathbf{p}^{(m)}, \mathbf{C}^{(m)})$
- and velocity v^(m)

PROPOSED ALGORITHM

Linear state space model

motion model: $\mathbf{x}_n = g(\mathbf{x}_{n-1}) + \mathbf{n}_{a,n}$ measurement model: $\mathbf{z}_n = h(\mathbf{x}_n) + \mathbf{n}_n$

Measurements

- self measurement
 - agent transmits and receives simultaneously (both antennas placed next to each other)
 - measurement results are independent on neighboring agents
- relative measurement
 - measurement between two agents (cooperative)
 - measurement results depend on both agent's positions

PROPOSED ALGORITHM

Extended Kalman Filter

- prediction step
 - linear constant-velocity model
- update step
 - measure impulse responses of each self and relative measurement
 - estimate channel parameters α_k and τ_k of each measurement
 - τ_k covers delay information
 - \$\alpha_k\$ covers reliability
 - predict deterministic delays
 - associate deterministic and measured delay
 - estimate agent positions by linearization of the multipath propagation model

MEASUREMENTS

Setup

- two agents move along trajectories
- floorplan is known (34 reflectors: windows, doors, concrete walls)
- no additional physical anchors

Channel measurements

- two self measurements
- one relative measurement
- impulse response shaped with raised cosine of 2GHz bandwidth at 7GHz carrier frequency

◆ロト ◆母 ト ◆臣 ト ◆臣 ト ◆ 日 ● ◆ ○ へ ⊙

MEASUREMENTS

Proof-of-concept

estimated MPCs of agent two

MEASUREMENTS

Impact of floorplan accuracy

- virtual anchor positions rely on provided floorplan
- add uniform distributed noise to floorplan segment positions

SUMMARY

Conclusion

- Anchorless, cooperative localization using multipath components
- Focus on robustness and accuracy
- Assumptions
 - no external interference
 - perfect synchronization between agents
 - floorplan is provided with high accuracy
- Future work
 - Distributed localization
 - Cognitive positioning

Prediction step

- constant velocity motion model
- virtual anchor (VA) movement dependent on the floor plan

- Update Step
 - Perform measurements of each mobile
 - Estimate arrival time of multipath components
 - Compute expected delays given the virtual anchors
 - Data Association of estimated and expected set of MPCs
 - Perform EKF update step

- Update Step
 - Perform measurements of each mobile
 - Estimate arrival time of multipath components
 - Compute expected delays given the virtual anchors
 - Data Association of estimated and expected set of MPCs
 - Perform EKF update step

- Update Step
 - Perform measurements of each mobile
 - Estimate arrival time of multipath components
 - Compute expected delays given the virtual anchors
 - Data Association of estimated and expected set of MPCs
 - Perform EKF update step

