

Revisiting the image source model: Towards geometry-based modeling of agent-to-agent channels

Josef Kulmer and Klaus Witrisal

Graz, University of Technology Graz, September 12, 2017

Geometry-based multipath propagation

Motivation

- indoor positioning requires infrastructure, e.g. anchor nodes
- multipath propagation contains position-related information
- \rightarrow omit anchors and utilize multipath propagation

Challenge

- modeling of multipath propagation agent-to-agent channels
- widely used multipath models assume static anchors

Contribution

- revisit multipath propagation model
- rephrase propagation models to deal with cooperative agent nodes
- analyze covered information in multipath delays

Josef Kulmer and Klaus Witrisal, Graz, University of Technology Graz, September 12, 2017

Geometry-based multipath propagation

Motivation

- indoor positioning requires infrastructure, e.g. anchor nodes
- multipath propagation contains position-related information
- → omit anchors and utilize multipath propagation

Challenge

- modeling of multipath propagation agent-to-agent channels
- widely used multipath models assume static anchors

- < ロ > < 同 > < 三 > < 三 > < 三 > < < </p>

Geometry-based multipath propagation

Motivation

- indoor positioning requires infrastructure, e.g. anchor nodes
- multipath propagation contains position-related information
- \rightarrow omit anchors and utilize multipath propagation

Challenge

- modeling of multipath propagation agent-to-agent channels
- widely used multipath models assume static anchors

Contribution

- revisit multipath propagation model
- rephrase propagation models to deal with cooperative agent nodes
- analyze covered information in multipath delays

CONTENTS

- 1. Indoor localization using multipath channel information
- 2. Analysis of proposed geometry model
- 3. Application
- 4. Summary

Multipath assisted indoor localization

Agent node m at $\mathbf{p}^{(m)} \in \mathbb{R}^2$ locates its position using multipath channel propagation to anchor m' at known position $\mathbf{p}^{(m')} \in \mathbb{R}^2$.

Setup

anchor $\mathbf{p}^{(m')}$.

• $\mathbf{p}^{(m)}$

reflecting object

イロト イポト イヨト イヨト 二日

Multipath assisted indoor localization

Agent node m at $\mathbf{p}^{(m)} \in \mathbb{R}^2$ locates its position using multipath channel propagation to anchor m' at known position $\mathbf{p}^{(m')} \in \mathbb{R}^2$.

 Measurement: multipath components (MPC) contained in channel impulse response

$$\stackrel{\uparrow}{\longrightarrow} \stackrel{\uparrow}{\tau_{\mathsf{LOS}} \tau_k} \mathsf{delay}$$

Multipath assisted indoor localization

Agent node m at $\mathbf{p}^{(m)} \in \mathbb{R}^2$ locates its position using multipath channel propagation to anchor m' at known position $\mathbf{p}^{(m')} \in \mathbb{R}^2$.

 Measurement: multipath components (MPC) contained in channel impulse response

• Objective: estimate agent position $\mathbf{p}^{(m)}$ using MPCs τ_{LOS} , τ_k .

Multipath assisted indoor localization

Modeling of specular reflection τ_k

- (optical) ray model¹
- neglect propagation effects like diffraction or penetration

Prominent solution for non-cooperative setup

image source model²

¹Kuttruff: Room Acoustics. Elsevier. 1973

²J Kulmer, E Leitinger, P Meissner, S Hinteregger, K Witrisal: "Cooperative indoor localization using multipath channel information", ICL-GNSS 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─ 三 ● ○○○

Image source model

Modeling of specular reflection τ_k using image source model

- define anchor as source
- obtain image sources at reflective objects

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ ● ●

Image source model

Modeling of specular reflection τ_k using image source model

- define anchor as source
- obtain image sources at reflective objects

MPC delays result as geometric distances

• measurement model:
$$\tau_{\text{LOS}} = \|\mathbf{p}^{(m')} - \mathbf{p}^{(m)}\|/c$$

 $\tau_k = \|\mathbf{p}_k^{(m')} - \mathbf{p}^{(m)}\|/c$

• estimate agent position $\mathbf{p}^{(m)}$ using au_{LOS} and au_k

Josef Kulmer and Klaus Witrisal, Graz, University of Technology Graz, September 12, 2017

Image source model

Limitations

- one node (source) needs to be static
 - appropriate for non-cooperative setup
 - in cooperative setup there is no static anchor
- dependencies among MPCs are not considered
 - single reflective object is bounced by several MPCs
 - impact of object parameters on MPC delays

³J Kulmer, E Leitinger, S Grebien, K Witrisal: "Anchorless cooperative tracking using multipath channel information", IEEE Transactions on Wireless Communications, 172(4), 2018 (₹ ⇒ + ₹ ⇒ + ₹ → - ₹ → - ? < ()

Image source model

Limitations

- one node (source) needs to be static
 - appropriate for non-cooperative setup
 - in cooperative setup there is no static anchor
- dependencies among MPCs are not considered
 - single reflective object is bounced by several MPCs
 - impact of object parameters on MPC delays

Proposal³: relate MPC delays to reflective objects rather than to static image sources

³J Kulmer, E Leitinger, S Grebien, K Witrisal: "Anchorless cooperative tracking using multipath channel information", IEEE Transactions on Wireless Communications, 172(4), 2018 (₹ ⇒ + ₹ ⇒ + ₹ → - ₹ → - ? < ? <

Proposed geometry model

Incorporate parameters of reflective objects in measurement function

image source model: MPCs are related to image sources

$$\tau_k = \|\mathbf{p}_k^{(m')} - \mathbf{p}^{(m)}\|/c$$

proposal: relate MPCs to reflective objects

 $\tau_k = \|d(\mathbf{p}^{(m)}, \mathbf{p}^{(m')}, \{\text{reflective object parameters}\})\|/c$

Benefits

- single equation for each MPC
- consider mutual dependencies of MPCs

Proposed geometry model

Measurement function

 $au_k = \|d(\mathbf{p}^{(m)}, \mathbf{p}^{(m')}, \{\text{reflective object parameters}\})\|/c$

Insights

- represent reflective objects by one point on its surface p_s and by its orientation e_s
- $d(\mathbf{p}^{(m)}, \mathbf{p}^{(m')}, {\mathbf{p}_s, \mathbf{e}_s})$
 - affine transformation of $\mathbf{p}^{(m)}$, $\mathbf{p}^{(m')}$ and $\{\mathbf{p}_s\}$
 - non-linear transformation of $\{\mathbf{e}_s\}$
- how are vectors $\mathbf{p}^{(m)}$, $\mathbf{p}^{(m')}$ and $\{\mathbf{p}_s\}$ affected by the measured scalars τ_{LOS} and τ_k ?

イロト イポト イヨト イヨト

Э

Covered information in MPCs

Illustration of single bounce k_1 and double bounce reflection k_2

Covered information of agent positions

 $\|\partial \tau_k / \partial \mathbf{p}^{(m)}\| = \|\partial \tau_k / \mathbf{p}^{(m')}\| = 1/c$

イロト イポト イヨト イヨト

Covered information of reflective object locations

 $\|\partial \tau_k / \partial \mathbf{p}_s\| = -2\cos(\phi_{k,s}) \mathbf{\mathring{e}}_s / c$

Josef Kulmer and Klaus Witrisal, Graz, University of Technology Graz, September 12, 2017

Insights

Contained information in MPCs regarding agent positions

- position information in direction of arriving / departing MPCs
- independent of arrangement of agents
- change of $|\Delta \tau| = 1$ translates to $||\Delta \mathbf{p}^{(m)}||/c = 1$

Information regarding locations of reflective objects

- obtained information perpendicular to object orientation
- arrangement of agents determines arriving angle
- change of $|\Delta \tau| = 1$ yields (up to) doubled sensitivity $||\Delta \mathbf{p}_s||/c = 2$

Insights

Contained information in MPCs regarding agent positions

- position information in direction of arriving / departing MPCs
- independent of arrangement of agents
- change of $|\Delta \tau| = 1$ translates to $||\Delta \mathbf{p}^{(m)}||/c = 1$

Information regarding locations of reflective objects

- obtained information perpendicular to object orientation
- arrangement of agents determines arriving angle
- change of $|\Delta \tau| = 1$ yields (up to) doubled sensitivity $||\Delta \mathbf{p}_s||/c = 2$

MPC delays are more sensitive to object locations than agent positions

Application

Employ proposed geometry model for multipath assisted indoor tracking using real data Setup

- four cooperative agents $m_1 \dots m_4$ move on trajectories of $n \in \{1 \dots 200\}$ steps in a hallway
- at each step n, agents perform UWB measurements with an Ilmsense Channel Sounder
- bandwidth 1 GHz at center frequency of 7 GHz
- no information from an anchor node, position information entirely captured from MPCs

x-direction in m

• consider objects with size > 25 cm (walls, windows, doors)

<□▶ <□▶ < 三▶ < 三▶ = 三 のへで

Application

Algorithm

- estimation of MPC parameters $\{\tau_k^{(m',m)}\}$
- Kalman Filter to recursively update position estimates $\mathbf{p}_n^{(m_1)} \dots \mathbf{p}_n^{(m_4)}$ contained in state vector \mathbf{x}_n using MPC delays $\{\tau_k\}$
 - linear motion model $\mathbf{x}_n = f(\mathbf{x}_{n-1}) + \text{noise}$
 - measurement model

$$\begin{bmatrix} \tau_1^{(m_1,m_2)} \\ \tau_1^{(m_1,m_3)} \\ \dots \end{bmatrix} = \begin{bmatrix} \|d(\mathbf{p}_n^{(m_1)},\mathbf{p}_n^{(m_2)},\cdot,\cdot)\|/c \\ \|d(\mathbf{p}_n^{(m_1)},\mathbf{p}_n^{(m_3)},\cdot,\cdot)\|/c \\ \dots \end{bmatrix} + \text{noise}$$

Josef Kulmer and Klaus Witrisal, Graz, University of Technology Graz, September 12, 2017

x-direction in m

• multipath propagation at step n = 30 in blue

x-direction in m

- illustration of gained information from specular reflection between m_3 and m_4

Application

Results

- position error in sub-meter range
- increased performance of m₂ and m₃

Summary

Summary

- revisit geometric multipath models for agent-to-agent channels
- analyzed impact of agent position and reflective object locations on multipath propagation
- utilized multipath model for tracking of cooperative agents without using information from anchors

Future work

- expansion of geometry model to point scatters and complex shapes
- investigations on impact of reflector orientation