
Anchorless Cooperative Tracking Using Multipath
Channel Information

Josef Kulmer, Student Member, IEEE, Erik Leitinger, Member, IEEE, Stefan Grebien, Student Member, IEEE,
and Klaus Witrisal, Member, IEEE

Abstract—Highly accurate location information is a key fa-
cilitator to stimulate future services for the commercial and
public sectors. Positioning and tracking of absolute positions
of wireless nodes usually requires information provided from
technical infrastructure, e.g. satellites or fixed anchor nodes,
whose maintenance is costly and whose limited operating cov-
erage narrows the positioning service. In this paper we present
an algorithm aiming at tracking of absolute positions without
using information from fixed anchors, odometers or inertial
measurement units. We perform radio channel measurements
in order to exploit position-related information contained in
multipath components (MPCs). Tracking of the absolute node
positions is enabled by estimation of MPC parameters followed
by association of these parameters to a floorplan. To account
for uncertainties in the floorplan and for propagation effects like
diffraction and penetration, we recursively update the provided
floorplan using the measured MPC parameters. We demonstrate
the ability to localize two agent nodes without the employment of
further infrastructure, using data from ultra-wideband channel
measurements. Further, we show the potential performance gain
if also one fixed anchor is available and we validate the algorithm
for a range of different signal bandwidths and number of nodes.

I. INTRODUCTION

Many applications in wireless radio networks demand
knowledge of the nodes’ absolute positions. Two types of
nodes are considered, namely mobile agents and fixed anchors
with unknown and known positions, respectively. The agents
intend to track their positions using measurements of position-
related signal parameters obtained from radio transmissions
to the anchors [1]. To ensure an accurate positioning, highly
effective measurements are necessary. In practice, the mea-
surements are often disturbed, especially in harsh radio prop-
agation environments e.g. in urban areas or indoors. Reliable
measurements are hindered due to the limited coverage of
global navigation satellite systems, radio-propagation effects
e.g. multipath propagation and non-line-of-sight (NLOS) con-
ditions, or interference by other agents. Several attempts to
encounter adverse radio propagation effects have been pro-
posed, e.g. identification and mitigation of NLOS conditions
[2]–[4], data fusion of multiple information sources [5] or
providing remedies against the errors induced by the multipath
propagation [6].
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A promising idea to deal with multipath propagation is uti-
lization rather than mitigation. Multipath components (MPCs)
originate at objects, e.g. planar surfaces and walls. Assuming
the objects’ locations are known a-priori or learned from
previous measurements then the agents can take advantage of
the position-related information contained in the MPCs [7]–
[18].

The methods presented in [9]–[11] associate MPCs to the
surrounding geometry yielding the possibility to track the
agents’ absolute positions with a single anchor only. To push
the limits of accuracy and robustness, the methods in [12]–
[16] introduce cooperation among the agents too. In [12] the
performance gain was shown in terms of position error for a
varying number of cooperating agents and a single anchor. In
[13] the mathematical model is relaxed to a convex optimiza-
tion problem. The gained performance is demonstrated for two
agents and three anchors.

The availability of only a small number of anchors and co-
operating agents results in a limited number of measurements
which can be used for positioning. To encounter ambiguities
and inaccuracies, the methods in [14]–[16] assume the employ-
ment of self measurements, where each agent is equipped with
a transmitting and a receiving antenna located next to each
other. Measuring the channel impulse response between these
antennas enables the estimation of MPCs whose parameters
depend only on one agent’s position (and antenna properties)
as well as the surrounding environment. These measurements
therefore serve as an attractive additional information source
for the task of positioning.

In this work we present an anchor-free, centralized, co-
operative tracking algorithm. It takes advantage of position-
related information contained in the measured channel impulse
responses. We consider relative measurements between neigh-
boring agents and self measurements where the agents act
simultaneously as transmitters and receivers. Such a setup ap-
plies for example to applications in a Car-To-X scenario, emer-
gency service personnel entering a building, and (automated)
vehicles in a production facility. The proposed algorithm
estimates parameters of deterministic MPCs and associates the
estimated delays to expected ones. To calculate the expected
delays, we consider planar surfaces (e.g. walls) in an indoor
environment described by a provided floorplan. To account
for inaccuracies in the floorplan, as well as for effects like
penetration and diffraction of the electromagnetic waves, the
associated MPC delays are used to simultaneously adapt the
floorplan while tracking the agents’ positions. The proposed
method aims at refining the (possibly inaccurate) floorplan



rather than discovering additional features (as proposed in
SLAM [19]). We assume a static environment.

The key contributions of this paper are:
• We formulate the relationship between the agent posi-

tions, the environment model and the measured MPC
delays. It is assumed that agents are synchronized with
each other.

• We present an anchor-free, centralized, cooperative algo-
rithm using data association of MPC delays and formu-
late an extended Kalman filter (EKF) for simultaneous
tracking of the agents’ positions and the floorplan.

• We demonstrate the ability of the algorithm to track
agents without information obtained from fixed anchors
or an inertial measurement unit.

• We recursively update the environment model to remedy
uncertainties in the provided floorplan.

• We show the performance in adverse scenarios consider-
ing a varying number of agents and channel bandwidths.

The paper is organized as follows: Section II provides
an overview of the problem and introduces the signal and
geometry models. Section III describes the implementation of
the cooperative algorithm. Section IV presents an evaluation
and discussion using a static environment and Sec. V wraps
up the paper with a conclusion. We note that this work extends
our conference publication [16], in what follows. We introduce
a geometry model for relating MPC delays to agent positions
as well as environment features. We verify the performance
gain for a varying number of agents, consider the influence
of the channel bandwidth and the impact of obtaining range
information from a fixed anchor.

II. PROBLEM FORMULATION

Consider a synchronized network of agents m ∈ M =
{1, . . . ,M} located in an indoor-environment as shown in
Fig. 1. The agents aim at estimating their positions1 {p(m)}
using radio signals affected by multipath propagation. The
multipath propagation originates from the interaction of the
transmitted unit-energy signal s(t) with its surrounding en-
vironment, e.g. reflections at flat surfaces like wall segments.
The time delays of the reflections convey information about the
surrounding environment and can be exploited for localizing
the agents.

We use UWB signals motivated by their superior time reso-
lution which enables a temporal separation of the multipath
components in indoor environments. We employ self and
relative channel measurements conducted by the agents. The
self measurement is individually performed by each agent m
by emitting the signal s(t) and receiving the corresponding
superposition of reflections originating at the surrounding
environment. The relative measurements are performed by
two cooperating agents m and m′, yielding a received signal
composed of the sum of the line-of-sight (LOS) and multipath
components. The delays of the components depend on both

1Similar to [7], [13], [17], [20]–[22] we model the agent’s positions and
the surrounding environment in two dimensions. The restriction is reasonable
since most positioning applications have knowledge about the agent’s height
and the extension to three dimensions is straight-forward.
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Fig. 1. Illustration of cooperative localization utilizing multipath propagation.
The receiving agent m facilitates the MPCs k ∈ K(m′,m) = {1, 2, 3}
for localization. The transmitting agent m′ is uncertain about its position,
represented by the ellipse. The higher position uncertainty of m′ in direction
of MPC k = 2 compared to k = 3 needs to be accounted by agent m.

agents’ positions, indicating that the position accuracy of
cooperating agents is related as well [7], [23]–[25].

A. Signal Model

We model the baseband-equivalent received signal
r(m′,m)(t) of agent m for the emitted signal s(t) of agent m′

according to [7], [26]

r(m′,m)(t)=
∑

k∈K(m′,m)

α
(m′,m)
k s

(
t−τ (m′,m)

k

)
+
(
s∗ν(m′,m)

)
(t)+w(t).

(1)
The first term on the right-hand-side denotes the deterministic
MPCs which can be related to an environment model. The
set K(m′,m) contains the modeled MPCs at agents’ positions
p(m) and p(m′). Each deterministic MPC k ∈ K(m′,m) is
characterized by its amplitude α

(m′,m)
k and delay τ

(m′,m)
k .

The relation between MPC delays, agent positions and the
surrounding environment will be further discussed in Sec. II-B.

The second term of (1) covers all residual components
which are not modeled by the environment model as well as
scattering at small objects or rough surfaces. It is defined as the
convolution of s(t) with diffuse multipath (DM) ν(m′,m)(t).
We model DM as a zero-mean Gaussian random process
which is non-stationary in the delay domain τ , defined by
the auto-correlation function E{νν(m′,m)(τ)[ν(m′,m)(u)]∗} =

S
(m′,m)
ν (τ)δ(τ−u) where S(m′,m)

ν (τ) denotes the power delay
profile (PDP) of DM. The PDP is quasi-stationary in the spatial
domain. At the large scale, it is a function of the positions
of transmitter and receiver, determined by the surrounding
environment [27].

The last term denotes additive white Gaussian noise with
a double-sided power spectral density of N0/2. The signal
model in (1) is applied for the relative measurements (m 6=
m′) as well as for the self measurements by setting m = m′.

B. Geometry model

The agents are capable of estimating the MPC delays
from the received signal. To link the estimated delays to the
environment, we employ a geometry model as illustrated in
Fig. 1. Agent m receives the emitted pulse of agent m′ as a
sum of the LOS component and reflections at wall segments



si and sj .
We consider reflections originating at planar surfaces, e.g.
walls, doors, and windows, in the following denoted as wall
segments. Each wall segment s ∈ S = {1, . . . , S} is described
by its location ps ∈ R2 (an end point of the wall segment) and
orientation lses with ls as length and the unit-vector es ∈ R2

as the direction of the wall segment as illustrated in Fig. 1.
The wall segments reflecting the deterministic MPC k are

denoted by s
(m′,m)
k , consisting of the indices of the wall seg-

ments s
(m′,m)
k = [s1, . . . , sI ], with I as number of reflecting

segments, in the following referenced as reflection order.
Given the geometry model, the delays of both the LOS and

the reflections can be denoted as a function of the interacting
agents p(m) and p(m′), and the bounced wall segments,
denoted as

τ
(m′,m)
k =

1

c
d
(
p(m′),p(m), s

(m′,m)
k

)
(2)

where c is the speed of light (see Appendix A for the
derivation).

As we assume a reciprocal channel between m′ and m,
the MPC delays are equal whether m′ acts as the receiver
or transmitter, i.e. τ (m′,m)

k = τ
(m,m′)
k (see Appendix B). We

consider a two-dimensional environment model. Reflections
which are not contained in the geometry model (e.g. reflections
by floor or ceiling, or at furniture) are treated as DM in (1).

III. PROPOSED ALGORITHM

The proposed algorithm tracks the agent’s positions as well
as the locations of the wall segments using an EKF [19].
We describe the state dynamics by the joint state vector xn
with discrete time step n by employing a state-space and a
measurement model

state-space model: xn = f(xn−1) + na,n (3)
measurement model: zn = h(xn) + nn (4)

where na,n and nn are the process noise and measurement
noise, respectively. The EKF2 estimates the agents’ positions
{p(m)

n : m ∈ M} and the locations of the wall segments
{ps : s ∈ S} using the estimated MPC delays {d̂(m′,m)

k,n =

cτ̂
(m′,m)
k,n : m,m′ ∈ M} (scaled by c), as measurement input

of the filter. Note, the joint state vector xn is introduced in
Sec. III-D and time step n has been added to position vectors
and MPC delays.

The algorithm is formulated by a prediction and an update
step. At the prediction step the movement of the agents is
modeled by a constant-velocity motion model (Sec. III-A)
using (3). The update step predicts the multipath propagation
employing the geometry model of Section II-B and updates
the agent positions and the wall segment locations (Sec. III-D)
using (4).

2The choice of the EKF is reasoned due to the weak non-linearity of the
measurement model in the vicinity of the linearization point.

A. State-space model of agents

We use a constant-velocity motion model to track the
agents’ positions. The state vector of a single agent m is
characterized by its position p

(m)
n and velocity v

(m)
n

x(m)
n = [(p(m)

n )ᵀ, (v(m)
n )ᵀ]ᵀ

and the movement of each agent follows as

x(m)
n = Fx

(m)
n−1 + Gn(m)

a,n

with

F =


1 0 ∆T 0
0 1 0 ∆T
0 0 1 0
0 0 0 1

 G =


∆T 2

2 0

0 ∆T 2

2
∆T 0
0 ∆T


where we assume that the driving acceleration noise n

(m)
a,n

follows a zero-mean, Gaussian distribution (assumed to be
independent across m and n) with variance σ2

a and ∆T denotes
the sample period of n. The individual state vectors of the
cooperating agents m ∈ M are stacked into a state vector
of all agents xMn = [(x

(1)
n )ᵀ, . . . , (x

(M)
n )ᵀ]ᵀ and the motion

model becomes
x

(1)
n

...
x

(M)
n


︸ ︷︷ ︸
xMn

=

F 0
. . .

0 F


︸ ︷︷ ︸

FM


x

(1)
n−1
...

x
(M)
n−1


︸ ︷︷ ︸
xMn−1

+

G 0
. . .

0 G



n

(1)
a,n
...

n
(M)
a,n


︸ ︷︷ ︸

nMa,n

.

(5)

B. Measurement model

The measurement model relates the positions of the agents
to delays of deterministic MPCs. Using the predicted agent
positions from the motion model, the algorithm calculates a set
of expected MPC delays. The expected delays are associated
to estimated MPC delays obtained from the measured channel
impulse responses. Finally, the employed EKF facilitates the
measurement model for updating the agents’ positions by
consideration of the associated MPC delays.

1) Estimation of multipath components: To estimate the
delays of the MPCs, each agent performs self and relative
channel measurements. An iterative least-squares approxima-
tion [28], [29] is used to extract one MPC per iteration ` from
each measurement r(m′,m)

n (t).
Initializing the signal r(`)(t) with r(0)(t) = r

(m′,m)
n (t) the

delay τ̂ (m′,m)
`,n of the strongest MPC in r(`)(t) is estimated as

τ̂
(m′,m)
`,n = argmin

τ

∫ T

0

|r(`)(t)− a(`)(τ)s(t− τ)|2dt

with

a(`)(τ) =

∫ T

0

[s(t− τ)]∗r(`)(t)dt (6)

where T denotes the measurement duration. The correspond-
ing amplitude follows as α̂

(m′,m)
`,n = a(`)(τ̂

(m′,m)
`,n ). Both



τ̂
(m′,m)
`,n and α̂(m′,m)

`,n are estimated from r(`)(t) at each iteration
step `, followed by updating r(`+1)(t) according to

r(`+1)(t) = r(`)(t)− α̂(m′,m)
`,n s(t− τ̂ (m′,m)

`,n )

until the Z(m′,m)
n strongest MPCs are found.

The estimated MPC delays of each self and relative mea-
surement are multiplied by c to obtain the MPC ranges
d̂

(m′,m)
`,n = cτ̂

(m′,m)
`,n , which are stored in the sets

Z(m′,m)
n =

{
d̂

(m′,m)
`,n

}Z(m′,m)
n

`=1
. (7)

2) Prediction of deterministic MPCs: Employing the mo-
tion model (5) yields the predicted agent positions p̆

(m)
n

contained in x̆Mn = FMxMn−1. The expected range of MPC k
follows from the geometry model (see Sec. II-B) as

d̆
(m′,m)
k,n = d

(
p̆(m′)
n , p̆(m)

n , s
(m′,m)
k

)
, for all k ∈ K(m′,m)

n .
(8)

The set of expected MPCs K(m′,m)
n depends on the agents’

positions and the environment. As the propagation of de-
terministic MPCs is potentially affected by obstacles and
neighboring wall segments, we verify their existence using an
optical ray-tracer3 [30, p. 132] to obtain the set of deterministic
MPCs K(m′,m)

n . Finally, we gather the expected ranges in the
set

D(m′,m)
n =

{
d̆

(m′,m)
k,n : k ∈ K(m′,m)

n

}
. (9)

3) Association of expected to deterministic MPCs: To
associate the estimated ranges Z(m′,m)

n to expected ranges
D(m′,m)
n we use the Munkres algorithm [31] based on an

optimal sub-pattern assignment metric [32]. The Munkres
algorithm aims at associating each expected range d̆

(m′,m)
k,n

to a measured one d̂
(m′,m)
`,n . The outcome A(m′,m)

n contains

pairs of associated ranges
(
d̂

(m′,m)
k,n , d̆

(m′,m)
k,n

)
, labeled by MPC

indices k ∈ K(m′,m)
n . Note, that we apply a cut-off distance

dc [29] which limits the discrepancy between each associated
pair to a maximum distance,

∣∣d̂(m′,m)
k,n − d̆

(m′,m)
k,n )

∣∣ ≤ dc.
Setting dc to small values (in sub-meter range) limits the
number of potential associations. A higher value enables more
associations but also increases the risk of wrong associations
(see Sec. IV-F).

After the association, the measured and the expected ranges
of each associated pair

(
d̂

(m′,m)
k,n , d̆

(m′,m)
k,n

)
∈ A(m′,m)

n are
stacked in the vectors

z(m′,m)
n =

[
. . . , d̂

(m′,m)
k,n , . . .

]
(10)

d(m′,m)
n =

[
. . . , d̆

(m′,m)
k,n , . . .

]
. (11)

4) Update step: The associated ranges of the self and
relative measurements are stacked in the observation vector
zn according to

zn =
[
z(1,1)
n , . . . , z(1,M)

n , z(2,1)
n , . . . , z(2,M)

n , . . . , z(M,M)
n

]ᵀ
(12)

3Application of the ray-tracer to the examples shown in Fig. 9 and 10
yields six and seven deterministic MPCs for the self and relative measurement,
respectively, considering first- and second-order reflections.

and the expected ranges in

dn =
[
d(1,1)
n , . . . ,d(1,M)

n ,d(2,1)
n , . . . ,d(2,M)

n , . . . ,d(M,M)
n

]ᵀ
both with length Kn =

∑
m′,m

∣∣A(m′,m)
n

∣∣. The EKF employs
the Jacobian HMn of the non-linear function (8) [19] to
describe the gradient of the deterministic MPC ranges with
respect to the agent positions, evaluated at the predicted agent
positions

HMn =
∂h(xM)

∂xM

∣∣∣∣
xM=x̆Mn

=


hM1,n

...

hMκ,n
...

hMKn,n

 . (13)

Each row κ ∈ [1,Kn] of HMn considers one associated range.
Assuming the κth row belongs to MPC k obtained at a

self measurement of agent m then the range gradient of (8)
(derived in Appendix C-1) follows as

ḋ
(m)
k,n =

∂d
(
p

(m)
,p

(m)
, s

(m,m)
k

)
∂p(m)

∣∣∣∣
p

(m)
=p̆

(m)
n

and the κth row of HMn is defined as

hMκ,n =
[
0, . . . ,

(
ḋ

(m)
k,n

)ᵀ︸ ︷︷ ︸
index µ

, . . . , 0
]

(14)

where µ is the index of the mth agent position p
(m)
n within

the state vector xMn .
In case that κ belongs to MPC k estimated at a relative mea-

surement between agents m and m′ then the range gradients
from Appendix C-2 are employed,

ḋ
(m′)
k,n =

∂d
(
p

(m′)
, p̆

(m)
n , s

(m′,m)
k

)
∂p(m′)

∣∣∣∣
p

(m′)
=p̆

(m′)
n

ḋ
(m)
k,n =

∂d
(
p̆

(m′)
n ,p

(m)
, s

(m′,m)
k

)
∂p(m)

∣∣∣∣
p

(m)
=p̆

(m)
n

and the κth row of HMn follows as

hMκ,n =
[
0, . . . ,

(
ḋ

(m′)
k,n

)ᵀ︸ ︷︷ ︸
index µ

, . . . ,
(
ḋ

(m)
k,n

)ᵀ︸ ︷︷ ︸
index ν

, . . . , 0
]

with µ and ν denoting the indices which locate the positions
of agents m′ and m within xMn , respectively.

C. Range uncertainty estimation

The proposed algorithm uses the MPC-range uncertainty
var
{
d̂

(m′,m)
k,n

}
to describe the measurement noise nn. To

estimate the range uncertainties we employ the signal-to-
interference-plus-noise ratio (SINR) of the corresponding
MPCs which defines the Cramér-Rao lower bound [7], [29]

var
{
d̂

(m′,m)
k,n

}
≥
(

8π2β2

c2
SINR(m′,m)

k,n

)−1

with

SINR(m′,m)
k,n =

∣∣α̃(m′,m)
k,n

∣∣2
N0 + TpS

(m′,m)
ν

(
τ̃

(m′,m)
k,n

)



where β is the effective (root mean square) bandwidth and
Tp the pulse duration of s(t). The SINR is a function of the
MPC amplitudes α̃(m′,m)

k,n and the PDP S
(m′,m)
ν (τ) evaluated

at MPC delays τ = τ̃
(m′,m)
k,n [7].

As the parameter estimation of MPCs as well as their
association to expected ones may be erroneous, especially if
only one snapshot of the channel impulse response is available,
we propose to employ the geometry model to calculate the
MPC delays τ̃ (m′,m)

k,n using (2), once the update step of the
agents’ positions is performed. The corresponding amplitudes
α̃

(m′,m)
k,n are estimated by projection of the received signal on

the delayed pulse s
(
t − τ̃ (m′,m)

k,n

)
(equivalent to (6)). Finally,

the SINR is estimated using a method-of-moments estimator
[29] taking the amplitudes

{
α̃

(m′,m)
k,i

}n−1

i=n−N over a window
of N past measurements into account.

An alternative way of estimating the measurement noise
considers the variance of the differences between the estimated
d̂

(m′,m)
k,n and the expected ranges d̆(m′,m)

k,n over N past measure-
ments. However, this method can be applied only for MPCs
assigned to expected ones. Weak MPCs are unlikely to be
discovered at each measurement which may result in a biased
variance estimation due to less observation points.

Assuming independence among the measurements the range
uncertainties of each self and relative measurement are stacked
according to (12) and a diagonal measurement noise covari-
ance matrix follows as

Rn = diag
([
. . . , var

{
d̂

(m′,m)
k,n

}
, . . .

])
. (15)

D. Incorporation of wall segment uncertainty

The proposed algorithm models the wave propagation em-
ploying a geometry model where the MPCs are assumed to
be reflected at planar surfaces, e.g. wall segments, whose
locations are known. In practice, several violations of the
geometry model have to be considered. First, the locations
of the wall segments, used for modeling the multipath prop-
agation, are typically provided by building plans with limited
accuracy, leading to biased expected MPC delays. Further, wall
segments consist of multiple layers of materials, each with
different reflection and transmission properties. The reduced
propagation speed inside the materials adds a positive bias to
the distance estimates.

To address the aforementioned sources of errors we pro-
pose to consider the geometry model within the state-space.
Inclusion of the wall segments in the state-space allows to
recursively update the segment locations using the estimated
MPC ranges. Stacking the wall segment locations at time
step n in the vector pSn = [pᵀ

1,n, . . . ,p
ᵀ
S,n]ᵀ with dimension

(2S × 1) yields the joint state vector consisting of agents and
wall segments according to

xn =
[(
xMn

)ᵀ
,
(
pSn
)ᵀ]ᵀ

.

The covariance of the stacked segment locations is described
by

PSn =

P1,1,n P1,S,n

. . .
PS,1,n PS,S,n



where Ps,s,n is the covariance of wall segment s and Ps′,s,n
is the cross-covariance between the segment s′ and s. Then,
the covariance of the state vector xn follows as

Pn =

[
PMn PM,S

n(
PM,S
n

)ᵀ
PSn

]
with PMn and PM,S

n being the covariance of the agent state
vector xMn and the cross-covariance of agent positions and
segment locations, respectively.

The state-space and measurement models are adapted ac-
cordingly. Assuming the segments to be static, the state-space
model in (5) is extended as follows

xn =

[
FM 0(4M×2S)

0(2S×4M) 0(2S×2S)

]
xn−1 +

[
nMa,n

0(2S×2)

]
= Fxn−1 + na,n.

(16)

with covariance Qn of the process noise na,n. The measure-
ment model considers the relation between deterministic MPC
ranges and wall segment locations. Its Jacobian, evaluated for
the predicted state x̆n = Fxn−1, is defined as (c.f. (13))

Hn =
∂h(x)

∂x

∣∣∣∣
x=x̆n

=

 h1,n
...

hKn,n

 . (17)

Assuming the κth measurement in zn belongs to MPC k of
the channel between agent m′ and m, respectively, then the
range gradients with respect to the locations of the segments4

{p̆s,n} follow as

ḋk,s,n =
∂d
(
p̆

(m)
n , p̆

(m′)
n , s

(m′,m)
k

)
∂ps

∣∣∣∣
ps=p̆s,n

and row hκ,n is written as

hκ,n =
[
hMκ,n, . . . , ḋ

ᵀ
k,1,n︸ ︷︷ ︸

index η1

, . . . , ḋᵀ
k,I,n︸ ︷︷ ︸

index ηI

, . . .
]

where the indices η1, . . . , ηI locate the segment indices in
s

(m′,m)
k within the state vector, and hMκ,n is defined in (14).

The algorithm includes all wall segment locations
{ps,n : s ∈ S} in the state vector xn in order to take advantage
of the correlation with the agents PM,S

n as well as the
correlation inbetween any two wall segments Ps′,s,n. These
correlations spread the obtained information to the neighboring
wall segments not assigned to an MPC at n, which is important
as the number of associated MPCs Kn is in general small
compared to the number of modeled wall segments S.

A summary of the algorithm, including the EKF equations
[19], is presented in Algorithm 1.

IV. RESULTS

The proposed algorithm for anchor-less tracking of coop-
erating agents is based on several simplifications, e.g. the
assumption of non-overlapping MPCs to ensure an accurate
data association, and the necessity of a reliable building

4Note, in (16) the segments are assumed to be static which results in p̆s,n =
p̂s,n−1 for all s.



Algorithm 1: Summary of the proposed algorithm.
assemble state vector x0, covariance P0, process noise
Q0 and measurement noise R0 using the initialization
values from Sec. IV-B

foreach n > 0 do
predict state vector x̆n = Fxn−1

covariance prediction P̆n = FPn−1F
ᵀ + Qn

foreach measurement between m and m′ do
estimate MPC delays Z(m′,m)

n ; c.f. (7)
predict deterministic MPC delays D(m′,m)

n at x̆n;
c.f. (9)

associate estimated and predicted MPCs resulting
in z

(m′,m)
n and d

(m′,m)
n ; c.f. (10) and (11)

stack all measurements in zn and predictions in dn
compute the Jacobian Hn at x̆n; c.f. (17)
estimate measurement noise Rn; c.f. (15)
Kalman gain Kn = P̆nHn(HnP̆nH

ᵀ
n + Rn)−1

state estimate x̂n = x̆n + Kn(zn − dn)
covariance estimate P̂n = (I−KnHn)P̆n
foreach measurement between m and m′ do

foreach MPC k ∈ K(m′,m)
n do

calculate delay
{
τ̃

(m′,m)
k,n

}
at x̂n

estimate amplitude
{
α̃

(m′,m)
k,n

}
and

measurement noise; c.f. Sec. III-C

floorplan used for the geometry model. Further, the EKF facil-
itates a linearized measurement model to obtain the estimated
agent positions using the measured distances. To validate
these simplifications we performed an extensive measurement
campaign using several agents in different setups. In Section
IV-C we demonstrate the possibility of tracking two agents
without anchor information, taking into account wall segment
uncertainties. In Section IV-D we evaluate the potential per-
formance gain when also a fixed anchor is available. Finally,
in Section IV-E we stress the robustness regarding uncertain
floorplans and different signal bandwidths.

A. Setup for measured data

We obtained the measured data using a (maximum length
sequence) channel sounder by Ilmsens [33] which spans a
bandwidth of 3.5 − 10.5 GHz with an output power (at the
antenna) of approx. −40 dBm/MHz. The received impulse
response is shaped with a raised-cosine pulse with roll-off
factor of R = 0.6 at a carrier frequency of fc = 7 GHz
[34]. Throughout the experiments in Sections IV-C and IV-D
we keep the pulse duration Tp of the raised-cosine pulse
fixed at Tp = 0.5 ns (corresponding to a 3 dB bandwidth
of 2 GHz), while in Sec. IV-E we evaluate the impact of Tp
on the algorithm. We use self-made Euro-cent coin antennas
[35, p. 86] [36] with approximately uniform radiation patterns
in azimuth domain and zeros in the directions of floor and
ceiling. Thus, MPCs at floor and ceiling are attenuated by the
beampattern. The agents were placed 1.2 m above the floor.
To perform the self localization, each agent is equipped with

two antennas, one acting as transmitter and the other one as
receiver. We used RF switching matrices [37] to automate the
measurements, facilitating up to 4 transmitter and 6 receiver
antennas.

B. Implementation and initialization

The algorithm was implemented according to Algorithm 1.
The agents’ positions are initialized at n = 0 with their
true5 positions. The agents’ position covariance is initialized
with PM0 = diag([σ2

agent, . . . , σ
2
agent]) with σ2

agent = 0.032 m2,
the wall segment uncertainties are initialized with {Ps,s,0 =
diag([σ2

seg, σ
2
seg]) : s ∈ S} and σ2

seg = 0.0032 m2, and the cross-
correlations PM,S

0 and Ps′,s,0 are initialized with zeros (for all
s′, s ∈ S : s′ 6= s). The driving noise σ2

a is set according to the
maximum agent velocity of ‖vmax‖ = 0.025 m/step such that
σ2

a = (‖vmax‖/(3∆T ))2 with ∆T = 1 step. The measurement
noise is initialized with R0 = diag([0.072, . . . , 0.072]) m2.

The expected number of MPCs |K(m′,m)
n | depends on the

agents’ positions and the room geometry (see Sec. III-B2). The
number of deterministic first-order reflections in the received
signals is in the order of four to six whereas hundreds of
higher-order reflections can be found. However, higher-order
reflections are strongly affected by path overlap, resulting
in challenging data association. Thus, the geometry model
considers first- and second-order MPCs only.

We set the cut-off distance (c.f. Sec. III-B3) to dc = cTp

and the number of estimated MPCs Z(m′,m)
n (Sec. III-B1) to

Z
(m′,m)
n = 1.5|K(m′,m)

n |. MPC pairs whose expected ranges
are equal within the cut-off distance dc are not considered in
(8) for avoiding wrong data associations. For the MPCs’ range
uncertainty estimation (see Sec. III-C), the algorithm considers
past measurements received within a distance (along the agent
track) of 0.2 m.

C. Proof-of-concept experiment

We first present a proof-of-concept experiment. We are
interested in how the algorithm gathers information necessary
for tracking without the use of anchors. Further, we stress its
robustness of dealing with a bias in the provided floorplan.

The agent network consists of two agents m ∈ {1, 2}
moving along trajectories of n ∈ {1, . . . , 200} with velocity
2.5 cm/step, as shown in Fig. 2. The floorplan considers planar
surfaces, e.g. concrete walls, doors, windows. To limit the
number of deterministic MPCs, we consider wall segments of
a length ls > 0.25 m resulting in 71 modeled wall segments.
At each n, two self-measurements and one relative measure-
ment are performed. The estimated and associated MPCs are
illustrated for n = 90.

1) Reliability of MPCs: Fig. 3 illustrates the SINRs of the
LOS and first-order MPCs bounced at wall segments {si :
i = 1, . . . , 8}, respectively. The SINRs reveal information
regarding the reliability of the MPCs used in the tracking
filter (c.f. Sec. (III-C)). We can observe that the LOS serves
as an important component justified by its high SINR. The

5The true position was obtained using a measuring tape whose limited
accuracy may introduce an error in the range of 1 cm.
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Fig. 2. Proof of concept scenario: Two agents move independently along
the trajectories (dotted, black) and estimate their positions (dotted, red).
The proposed algorithm tracks the agents by exploiting MPC delays and
corresponding SINRs (see Fig. 3). Measured and associated MPCs are
illustrated for time step n = 90. The ellipses illustrate the standard deviation
of the position estimates before (dashed, scaled by a factor of 10) and after
the update step (solid, scaled by a factor of 40) at n = {30, 60, . . . , 180}.

reflections at concrete walls {s1, s2, s4, s7, s8}, doors {s3, s6}
and the window {s5} are also promising candidates although
their SINRs are lower compared to the LOS.

Both agents are closely surrounded by walls along the x-
direction whereas the y-direction provides more space. In
general, closely-located wall segments result in stronger MPCs
which are valuable for positioning. This observation translates
to a lower standard deviation of the position error along the
x-direction, illustrated by the ellipses in Fig. 2.

2) Floorplan inaccuracies: As the proposed algorithm
facilitates deterministic MPCs, its performance is strongly
dependent on the accuracy of the provided floorplan. We
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Fig. 3. Estimated SINR-values obtained from agent one’s (a) and agent two’s
(b) self measurements, respectively, and from relative measurements between
both agents (c). The associated wall segments in s

(m′,m)
k and corresponding

multipath propagation paths are illustrated in Fig. 2. High SINR-values
indicate a reliable MPC range measurement. The range of the LOS is most
accurate, justified by its high SINR.

can consider two challenges: (i) the electromagnetic waves
experience a different floorplan due to effects like diffraction
and penetration and (ii) the provided floorplan is inaccurate,
e.g. pin boards mounted on the wall segments are not consid-
ered. The algorithm cannot distinguish between both cases. It
employs the estimated MPC parameters to recursively update
the floorplan. At each time step n the EKF weighs between the
prior segment location and the measured MPC ranges using the
prior covariance and the measurement noise. Each measured
MPC provides location information to the floorplan. We are
interested in the impact of prior location information on the
convergence behavior of the floorplan. Figure 4 exemplifies
the distance d32 between wall segments s3 and s2 (see Fig. 2)
in comparison with the distance d12 between the wall segments
s1 and s2 along n. According to the building floorplan, both
s1 and s3 are in-line, resulting in d32≈ d12.

We initialized the location of s3 with a bias of 0.1 m along
its x-direction and analyze the rate of convergence using
different initializations of the segment uncertainty σseg, namely
σ? = 10 mm, σ� = 3 mm, and σ◦ = 1 mm, resulting in
distances d?

32
, d�

32
, and d◦

32
, respectively. Wall segments s1 and

s2 are associated to MPC measurements, starting with n = 1
and the distance between both segments attains d12≈ 4.38 m.
At time steps n ∈ {120, . . . , 175}, an MPC from segment
s3 is discovered in Agent 2’s self measurement. Immediately
the segment location is rearranged such that the expected MPC
range matches with the measured one and d32 converges to d12.
Figure 4 (b) exemplifies the standard deviation ([P3,3,n]x)

1
2

of wall segment s3 along its x-direction. The more estimated
MPCs are associated to s3, the lower gets its variance. We
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of cooperating agents with and without anchor for Tp = 0.5 ns.

can observe that a high prior uncertainty of σ? enables a
fast adaption of the wall segment location and the initial bias
is reduced. If the wall segment prior uncertainty is lowered
(σ◦) then the EKF relies more on the prior locations and the
convergence rate is reduced.

D. Impact of anchor and number of agents

To evaluate the benefit of a fixed anchor we introduce
M cooperating agents plus one anchor at position p(a), as
illustrated in Fig. 7. The agents move independently along
their trajectories of n ∈ {1, . . . , 200} with varying velocities
of 1 − 2.5 cm/step and perform, in summary, M self and
M(M − 1)/2 relative measurements at each n. Additionally,
each agent runs one relative measurement to the fixed anchor.
These measurements are treated in the same manner as the
relative measurements between the agents. The transmitting
agent in (2) is set to the anchor’s position (p(m′) = p(a)) and
the additional measurement equations {τ (a,m)

k,n , for all k,m}
are added to (13).

We are interested in the performance in terms of position
error for different sizes of the agent network, M = {2, 3, 4},
with and without the use of an additional fixed anchor. Figure 5
illustrates the cumulative distribution functions (CDFs) of the
position error εn =

∑
m ‖p̂

(m)
n − p

(m)
n ‖ with p

(m)
n as true
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Tp =1 ns, w/o su Tp =0.67 ns, w/o su Tp =0.5 ns, w/o su

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8
0.9

1

position error εn in m
(a) r = 1 mm

C
D

F

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8
0.9

1

position error εn in m
(b) r = 25 mm

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8
0.9

1

position error εn in m
(c) r = 50 mm

C
D

F

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8
0.9

1

position error εn in m
(d) r = 75 mm

Fig. 6. CDF of the position error using different ranges of floorplan errors
of r = 1 mm (a), r = 25 mm (b), r = 50 mm (c) and r = 75 mm (d)
against pulse duration Tp ∈ {1, 0.67, 0.5} ns, with segment update (w su)
and without segment update (w/o su).

position of agent m. It can be observed that the presence of
a fixed anchor improves the position error, especially for a
small agent network of M = 2 which is justified by the higher
number of available channel measurements (for M = 2, five
channel measurements are available with anchor information
compared to three channel measurements without). An increas-
ing network size decreases the position error. The performance
for M = 3 and M = 4 is similar but with a slight decrease
for M = 4 due to NLOS conditions of Agent 4 (see Fig. 7).
We can conclude that the algorithm is capable of tracking the
agents’ positions with only a minor degradation of the position
error if no fixed anchor is used.

E. Impact of floorplan accuracy and signal bandwidth

As the algorithm relies strongly on the provided floorplan,
we investigate further the impact of an inaccurate floorplan.
Therefore, we initialized the locations {ps,n : s ∈ S} at n = 0
by adding independent, uniformly distributed noise samples to
the true locations ps

ps,0 = ps + ns, for all s ∈ S.

The elements in ns have been sampled from U(−r/2, r/2)
with range r. Further, we are interested in the impact of the
pulse duration Tp of the transmitted signal on the position
accuracy. The proposed algorithm utilizes MPC parameters
whose estimation is biased in case of overlapping MPCs and
affected by diffuse multipath propagation. To ensure resolvable



MPCs in the time domain, short pulse duration (corresponding
to high bandwidths) are beneficial.

In the following, we compare the proposed algorithm with
and without consideration of the segment uncertainty using
xn and xMn , respectively. We propose to evaluate the agents’
position error relative to the floorplan. We consider the loss
of an absolute coordinate system if the segment locations are
included in the state vector by introducing a center of gravity
of the floorplan

p̂g
n =

(∑
s∈S

P̂−1
s,s,n

)−1∑
s∈S

P̂−1
s,s,np̂s,n.

The center of gravity p̂g
n can be interpreted as weighted

average of the floorplan feature locations. Uncertain wall
segments (indicated by a large covariance {P̂s,s,n}) will be
less considered in p̂g

n. The agents’ position errors (relative to
the floorplan) follow from

εn =
∑
m

‖(p̂(m)
n − p(m)

n )− (p̂g
n − pg

0)‖

where the vector (p̂g
n − pg

0) accounts for the floorplan
adaptation. To obtain the agent positions relative to the
floorplan, the movement of p̂g

n is subtracted from the po-
sition error. We evaluate different levels of floorplan un-
certainties r ∈ {1, 25, 50, 75}mm and pulse duration Tp ∈
{0.5, 0.67, 1} ns, each with 100 Monte Carlo runs. Figure 6
illustrates the CDFs of the position error, averaged for agent
network sizes of M = 2, 3 and 4.

The position error depends strongly on the pulse duration
seen by a poor performance at Tp = 1 ns. At smaller pulse
duration, Tp ∈ {0.67, 0.5} ns, the algorithm performs better
because the MPCs tend to be more separated in the time
domain yielding a more reliable MPC parameter estimation
and association.

In general, we can observe that the position error degrades
when a biased floorplan is initialized. This leads to a biased
geometry model and subsequently to a challenging association
of measured and predicted MPC delays. Including the floor-
plan in the state-space (using xn) enables to remedy the bias
in order to get a more consistent floorplan.

F. Discussion and remarks

The algorithm requires to set the initial uncertainty of agents
and wall segment locations at n = 0. At each time step the
EKF updates the agent positions and segment locations by
weighing between prior information (from the prediction step)
and measured MPC delays associated to measurement noise.
A wall segment which is uncertain about its location is more
affected by the update step than a certain one (see Fig. 4).
In [19, p. 317] the initialization of σ2

seg → ∞ is proposed
in order to enable a fast adaption. In this case the algorithm
relies strongly on the MPC delay measurements and the quality
of their data association. We prefer a low value of σ2

seg =
0.0032 m2 since a slow adaption is more robust to noisy delay
measurements and wrong data associations.

We do not add process noise to the segment locations. Each
measured MPC thus reduces the segment location uncertainty
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Fig. 7. Illustration of floorplan and agent movement. The agents track
their positions (dotted, red) using multipath propagation (gray). Obtaining
additional information from a fixed anchor (blue) at p(a) improves the
accuracy, as shown in Fig. 5. The ellipses illustrate the standard deviation
of the position estimate with (blue) and without anchor information (gray),
scaled by a factor of 40 at n = {30, 60, . . . , 180}.

(see Fig. 4). Low values of uncertainty prohibit a further
adaption and thus a limitation of the lower variance may be
useful to keep the adaptation active. However, in this work
we are interested in how the adaption of the floorplan can be
beneficial and we did not implement such a limit.

The data association step is performed using the predicted
agent positions. An increased accuracy of the predicted posi-
tions yields an increased quality in the data association as
well. We recognized that a small cut-off distance between
expected and estimated ranges of dc = 0.15 m (at Tp = 0.5 ns)
is vital when the agent network is off track. A mismatch
between predicted and true agent positions yields wrong data
associations. As shown in [38], the limitation of the maximum
offset to dc lowers wrong associations.



At the EKF prediction step the covariance of the agents is
increased by the driving acceleration noise (with variance σ2

a ).
In order to track trajectories with abrupt changes we set the 3σa
point equal to the maximum velocity ‖vmax‖ = 0.025 m/step.
We recognized that a smaller driving acceleration noise im-
proves the accuracy but the algorithm was no longer able
to follow abrupt turns in the trajectory as it puts too much
importance on the motion model. We evaluated the algorithm
in a static scenario where the only moving objects are the
agents. In a non-static environment, additional (untracked)
objects are present which deteriorate the multipath propa-
gation. Subsequently, the SINRs of the MPCs are lowered,
the algorithm relies less on MPC delays, and the position
estimation uncertainty is increased. In this work, we did not
evaluate the importance of static environments.

The complexity of the algorithm is mainly determined
by the number of agents M . Considering all agents are
located within their communication range then each additional
agent requires M channel measurements (Sec. III-B1), range
predictions (Sec. III-B2), data associations (Sec. III-B3), and
range uncertainty estimations (Sec. III-C). The EKF matrix
inversion has a complexity of O((MK)2.4) [19, p. 43] with
K as average number of associated MPCs (in practice approx.
4 − 6) and the complexity of the EKF matrix multiplication
scales quadratically with the size of the state vector.

Ensuring high localization accuracy goes hand in hand
with high synchronization accuracy. At self measurements the
transmitter is co-located with the receiver which enables the
usage of the same clock. At relative measurements transmitter
and receiver are spatially separated and synchronization of the
clocks is necessary. Any synchronization error will be reflected
in a biased MPC parameter estimation. In literature, strategies
to cope or neglect its impact have been proposed, e.g. joint
positioning and synchronization [39], or a two-way exchange
of pilot sequences like in IEEE 802.15.4a UWB radios [40]
or using differential timing information inbetween MPCs [7].
In this work we omit the required synchronization by wiring
the antennas to the channel sounder. State of the art UWB
radios [40] induce a synchronization error with variance of
52 cm2 which will affect the presented localization accuracy
in a comparable range.

V. CONCLUSIONS

In this paper, we have presented a centralized, cooperative
tracking algorithm for wireless networks without the need for
further infrastructure, e.g. fixed anchors. We have developed an
algorithm based on an extended Kalman filter which makes use
of position-related information contained in measured channel
impulse responses. To address uncertainties in the environment
model we have included the floorplan in the state-space model.
The performance evaluation with measured data has shown the
feasibility of using deterministic MPCs to simultaneously track
absolute agent positions and adapt the floorplan without em-
ploying information from an inertial measurement unit or from
fixed anchors. The results demonstrate the necessity of high
signal bandwidths exceeding 1 GHz to prevent overlapping
of deterministic MPCs in an indoor environment. Our future
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work will address the reduction of the required bandwidth,
the derivation of distributed tracking filters as well as the
exploration of additional features in the geometry model.

APPENDIX A
DERIVATION OF THE GEOMETRY MODEL

We describe the path of a deterministically modeled MPC
k as a function of the positions of the transmitting agent m′,
the receiving agent m, and the reflected surfaces. Each
MPC is associated to a vector s

(m′,m)
k consisting of the

indices of the reflecting wall segments in chronological order
s

(m′,m)
k = [. . . , si, sj , . . . , sI ] where I is the reflection order.

Each wall segment s ∈ S is described by its location ps and
alignment es, as illustrated in Fig. 8. The transmitted signal
from agent m′ is reflected at the wall segments si and sj and
finally received by agent m. To calculate the delay of the MPC,
an image-source model is used which mirrors the position of
the transmitting agent at each reflecting wall segment to obtain
mirrored images of the agent position.

Application of the image-source model for a first-order
MPC is equivalent with mirroring the position p(m′) at seg-
ment s ∈ S [16], [41]

a(m′)
s = p(m′) − 2Ts

(
p(m′) − ps

)
(18)

= (I− 2Ts)p
(m′) + 2Tsps

with Ts = Uπ
2
ese

ᵀ
sU

ᵀ
π
2

and Uπ
2

is a rotation matrix by π/2
(i.e. Uπ

2
= [[0, 1]ᵀ, [−1, 0]ᵀ]). In (18) the matrix multiplication

with Ts extracts the component of
(
p(m′) − ps

)
which is

orthogonal to es. Under the assumption that the segment’s
location ps and alignment es are fixed, the terms (I − 2Ts)
(denoted as Householder matrix) and 2Tsps can be calculated
beforehand. Rewriting (18) as a function depending on the
agent’s position yields the affine transformation

a(m′)
s = fs

(
p(m′)

)
.

Higher-order reflections are modeled straight forwardly. Each
reflecting segment is equipped with a virtual source, as shown
in Fig. 8. The virtual source a

(m′)
si = fsi

(
p(m′)

)
, corre-

sponding to segment si, is mirrored at segment sj to obtain



a
(m′)
si,sj = fsj

(
a

(m′)
si

)
, which again can be expressed as a

function of the agent’s position according to

a(m′)
si,sj = fsj

(
fsi
(
p(m′)

))
= fsj ◦ fsi

(
p(m′)

)
.

The resulting MPC delay τ (m′,m)
double is calculated as norm of the

geometric distance between a
(m′)
si,sj and the receiver position

p(m), scaled by the speed of light c

τ
(m′,m)
double =

1

c

∥∥p(m) − a(m′)
si,sj

∥∥.
These steps can be generalized for an arbitrary deterministic
MPC delay by considering the reflected segments s

(m′,m)
k =

[s1, . . . , sI ] in the function composition of {fs : s ∈ s
(m′,m)
k }

according to

τ
(m′,m)
k =

1

c

∣∣∣∣p(m) −
(
fsI ◦ . . . ◦ fs1

)(
p(m′)

)∣∣∣∣ (19)

denoted as measurement equation

τ
(m′,m)
k =

1

c
d
(
p(m′),p(m), s

(m′,m)
k

)
(20)

which relates the delay of MPC k to the agents’ positions
p(m) and p(m′).

The advantage of using (20) is that the MPC delays are
being decomposed into the positions of the agents m and m′

and the geometry of the wall segments. It was constructed by
mirroring agent position p(m′) at wall segments si followed
by sj . In the following (Appendix B) we show for the general
case that this procedure is equal to mirroring agent position
p(m) first by sj followed by si and thus, (20) is capable of
describing the delay gradients w.r.t both agent positions. In
Appendix C we illustrate regularly occurring MPCs and their
impact on the positioning algorithm.

APPENDIX B
CHANNEL RECIPROCITY

The proposed geometric model distinguishes between the
transmitting and receiving agents located at p(m′) and p(m),
respectively. In the following, we show that the MPC delays
and the delay gradients with respect to both agents and the
floorplan features can be calculated irrespective of which agent
is transmitting or receiving. To give a general proof, we show
that the measurement equation (20) complies with

d(p(m′),p(m), s
(m′,m)
k ) = d(p(m),p(m′), s

(m,m′)
k ). (21)

The ordering of reflected wall segments is different and needs
to be considered. Let s(m′,m)

k consist of the indices of bounced
walls of the traveling wave in chronological order (i.e. the ith
element

[
s

(m′,m)
k

]
i

denotes the ith bounced wall) from agent
m′ to m. Then s

(m,m′)
k contains the bounced wall segments

in reversed order of s(m′,m)
k[

s
(m′,m)
k

]
i

=
[
s

(m,m′)
k

]
I−i+1

for all i = 1, . . . , I. (22)

We abbreviate s.i = [s
(m′,m)
k

]
i
, s/i =

[
s
(m,m′)
k

]
i

and omit the
MPC index k for a shorter notation. Plugging (19) in (21) and
tacking the square yields

1

c

∥∥∥p(m)

︸︷︷︸
a

−
I∏
i=1

As.i
p(m′)

︸ ︷︷ ︸
−b

−
I∑
i=1

I∏
j=i+1

As.j
bs.i︸ ︷︷ ︸

−c

∥∥∥2

=

1

c

∥∥∥p(m′)

︸ ︷︷ ︸
d

−
I∏
i=1

As/i
p(m)

︸ ︷︷ ︸
−e

−
I∑
i=1

I∏
j=i+1

As/j
bs/i︸ ︷︷ ︸

−f

∥∥∥2

(23)

with the Householder matrix As.i
= (I − 2Ts.i

) and bs.i
=

2Ts.i
ps.i

. Rewriting (23) and omitting c results in

‖a+ b+ c‖2 = ‖d+ e+ f‖2

aᵀa+ bᵀb+cᵀc+ 2aᵀb+ 2aᵀc+ 2bᵀc =

dᵀd+ eᵀe+ fᵀf + 2dᵀe+ 2dᵀf + 2eᵀf .

The Householder matrix has the property

Aᵀ
s.i
As.i

= (I− 2Uπ
2
es.i

eᵀs.i
Uᵀ

π
2

)ᵀ(I− 2Uπ
2
es.i

eᵀs.i
Uᵀ

π
2

)

= (I− 4Uπ
2
es.i

eᵀs.i
Uᵀ

π
2

+ 4Uπ
2
es.i

eᵀs.i
es.i

eᵀs.i
Uᵀ

π
2

)

= I
(24)

which results in aᵀa = eᵀe = (p(m))ᵀp(m) and bᵀb =
dᵀd = (p(m′))ᵀp(m′). Using the property

As.i
bs.i

= (I− 2Uπ
2
es.i

eᵀs.i
Uᵀ

π
2

)2Uπ
2
es.i

eᵀs.i
Uᵀ

π
2
ps.i

= −2Uπ
2
es.i

eᵀs.i
Uᵀ

π
2
ps.i

= −bs.i

and (24), term cᵀc results in

cᵀc =bᵀ
s.1
Aᵀ

s.2
· · ·Aᵀ

s.I
As.I
· · ·As.2

bs.1
+ . . .

+ bᵀ
s.I
As.I
· · ·As.2

bs.1
+ . . .+ bᵀ

s.I
bs.I

=bᵀ
s.1
bs.1

+ . . .− bᵀ
s.I
As.I−1

· · ·As.2
bs.1

+ . . .+ bᵀ
s.I
bs.I

.

Since the first bounced wall in s/i equals the last bounced wall
in s.i , s/i = s.I−i+1, the term fᵀf follows as

fᵀf =bᵀ
s.I
Aᵀ

s.I−1
· · ·Aᵀ

s.1
As.1
· · ·As.I−1

bs.I
+ . . .

+ bᵀ
s.I
As.I−1

· · ·As.1
bs.1

+ . . .+ bᵀ
s.1
bs.1

=bᵀ
s.I
bs.I

+ . . .− bᵀ
s.I
As.I−1

· · ·As.2
bs.1

+ . . .+ bᵀ
s.1
bs.1

showing that cᵀc = fᵀf .
Rewriting the terms aᵀb and dᵀe results in

aᵀb = −(p(m))ᵀ
I∏
i=1

As.i
p(m′)

= −(p(m′))ᵀ
I∏
i=1

Aᵀ
s.I−i+1

p(m)

= −(p(m′))ᵀ
I∏
i=1

As/i
p(m) = dᵀe
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Fig. 9. Illustration of multipath propagation originating from the self measure-
ment of agent m at position p(m). The wall segments are described by their
location ps and direction es. The single-bounce and corner reflection cover
information about the agent’s position whereas the double-bounce reflection
between the parallel walls cannot be exploited for positioning.

applying (22) and the property of symmetry (Aᵀ
s/i

= As/i
).

Finally, bᵀc and dᵀf follow as

bᵀc = (p(m))ᵀ
( I∏
i=1

As.i

)ᵀ I∑
i=1

I∏
j=i+1

As.j
bs.i

= (p(m))ᵀAᵀ
s.1
· · ·Aᵀ

s.I
As.I
· · ·As.2

bs.1
+ . . .

+ (p(m))ᵀAᵀ
s.1
· · ·Aᵀ

s.I
bs.I

= − (p(m))ᵀbs.1
− . . .− (p(m))ᵀAᵀ

s.1
· · ·Aᵀ

s.I−1
bs.I

= − (p(m))ᵀbs/I
− . . .− (p(m))ᵀAs/I

· · ·As/2
bs/1

= − (p(m))ᵀ
I∑
i=1

I∏
j=i+1

As/j
bs/i

= dᵀf (25)

and similarly to (25), aᵀc = eᵀf .

APPENDIX C
GRADIENT OF SELF AND RELATIVE MEASUREMENTS

1) Gradient of self measurements: Figure 9 illustrates the
self measurement of agent m containing a single-bounce and
two double-bounce reflections, one at parallel walls

(
s

(m,m)
parallel =

[s1, sj ]
)

and one at a corner
(
s

(m,m)
corner = [si, sj ]

)
. Due to their

regular occurrence in multipath propagation, these reflection
are treated in more detail, in the following.

In case of the single-bounce reflection the vector of reflect-
ing segments is s

(m,m)
single = [si] and (2) follows as

τ
(m,m)
single =

1

c
d(p(m),p(m), s

(m,m)
single ) =

1

c

∥∥2Tsi(p
(m) − psi)

∥∥.
The gradient with respect to the agent’s position results in

∂τ
(m,m)
single

∂p(m)
= 2

2Tsi(p
(m) − psi)

c
∥∥2Tsi(p

(m) − psi)
∥∥︸ ︷︷ ︸

ξ

(26)

where ξ is the normalized direction of the incident multipath,
scaled by 1/c. The scaling factor of 2 indicates that an agent’s

position movement ∆p towards the wall segment results in a
doubled time lag of the MPC along the delay domain.

The gradient with respect to the wall segment location psi
follows equivalently to (26) as

∂τ
(m,m)
single

∂psi
= −2ξ = −

∂τ
(m,m)
single

∂p(m)
(27)

and demonstrates that the wall segment location’s gradient is
in opposite direction to the agent’s position gradient.

In case of a double-bounce reflection, two wall segments
are involved. If both wall segments are aligned in parallel (e.g.
{s1, sj}), then es1 = ±esj and (2) reduces to

τ
(m,m)
parallel =

1

c

∥∥2Ts1ps1 − 2Tsjpsj
∥∥

showing that the MPC’s delay τ
(m,m)
parallel is independent on the

agent’s position. Hence, double-bounce reflections originating
from parallel walls convey information of wall segments only
but cannot be used for positioning of the agents.

Finally, if the affected wall segments are aligned in orthog-
onal directions (e.g. {si, sj}) then eᵀsiesj = 0, Tsi +Tsj = I
and the MPC’s delay follows as

τ (m,m)
corner =

1

c

∥∥2p(m) − 2Tsipsi − 2Tsjpsj
∥∥

Its derivative with regard to the agent’s position is

∂τ
(m,m)
corner

∂p(m)
= 2

2p(m) − 2Tsipsi − 2Tsjpsj
c
∥∥2p(m) − 2Tsipsi − 2Tsjpsj

∥∥︸ ︷︷ ︸
ζ

. (28)

Similar to a single-bounce reflection (26) an agent’s position
movement towards the corner results in a doubled time lag of
the MPC along the delay domain. The derivative with regard
to the wall segment locations is

∂τ
(m,m)
corner

∂psi
= −2Tsiζ,

∂τ
(m,m)
corner

∂psj
= −2Tsjζ

showing that the MPC direction ζ is decomposed in two
components, −2Tsiζ and −2Tsjζ. The sum of both gradients
is equal to the agent’s one (but in opposite direction)

∂τ
(m,m)
corner

∂psi
+
∂τ

(m,m)
corner

∂psj
= −∂τ

(m,m)
corner

∂p(m)
.

In general, these gradients are always perpendicular to the
wall segments enforced by matrices {Ts}. The angle between
the wall segment alignment and the bouncing MPC scales the
magnitude of the gradient.

2) Gradient of relative measurements: Figure 10 exempli-
fies delays of deterministic MPCs obtained by a relative mea-
surement between the transmitting agent m′ and the receiving
agent m consisting of an LOS and two additional reflections.
The delay of the LOS τ (m′,m)

LOS is independent of wall segments
and (2) follows as

τ
(m′,m)
LOS =

1

c

∥∥p(m) − p(m′)
∥∥
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Fig. 10. Illustration of multipath propagation of the relative measurement
between the transmitting agent m′ and receiving agent m.

Its gradient with respect to both agents results in

∂τ
(m′,m)
LOS

∂p(m′)
=

p(m′) − p(m)

c
∥∥p(m) − p(m′)

∥∥
∂τ

(m′,m)
LOS

∂p(m)
=

p(m) − p(m′)

c
∥∥p(m) − p(m′)

∥∥
(29)

demonstrating that their gradient is in opposite directions
∂τ

(m′,m)
LOS /∂p(m′) = −∂τ (m′,m)

LOS /∂p(m). The gradient of the
MPC delays τ (m′,m)

single and τ (m′,m)
double is obtained similarly to (29)

by computing the derivative of (2) with regard to the agents’
positions p(m) and p(m′).

We can conclude that the gradient of agent m depends
on the position of the cooperating agent m′. This is in
contrast to the self measurements where the delays of the
MPCs are independent of other agent positions. Furthermore
the obtained delays of the relative measurements are less
sensitive to agents’ position movements compared to the self
measurements (due to a missing factor of 2 which arises at
(27) or (28)).
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