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Machine learning

The goal of supervised machine learning is to
use a training set Sx to “learn” a function y(·) that
correctly “explains” observations/targets t given
input data x, i.e.,

t = y(x), x ∈ Sx
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Machine learning

Consider the following example:
given a set of points (xi, ti) find the function y(x),
such that ti = y(xi)
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Machine learning

This is one possible solution
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Machine learning

Here is another, and quite a different one.
Which solution to choose?
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Kernel methods

One possible solution is the following:

I Choose a certain hypothesis space H, y ∈ H.

I Impose constrains on the function y. In most
cases it is the norm of the sought function y.

I Find the regularized solution.

min
y∈H

{

1

N

N
∑

i=1

V (ti, y(xi)) + λ‖y‖2

}
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Kernel methods

It can be shown that the solution to this
regularization could be written in the following form

y(x) =
N

∑

i=1

wi · K(x,xi)

K(·, ·) is called the kernel.

Usually the kernel K(·, ·) is associated with the cor-

responding hypothesis space H.
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Sparsity

With as many parameters as training examples,
we would expect severe over-fitting. By setting
some of the weights to zero this can be avoided.
Thus, the model becomes sparse.

The direct posterior of such an approach leads to
Support Vector Machines (SVMs).

In the SVM case, every xi for which wi 6= 0 be-
comes a support vector.
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Relevance Vector Machines
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Relevance Vector Machines

In a nutshell, RVM is a Bayesian approach to
estimate the parameters wi of the model

y(x,w) =
N

∑

i=1

wi · K(x,xi) + w0

and introduce sparsity.
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Relevance Vector Machines

I RVM is not a Bayesian interpretation of SVM
but rather the method on its own, which
adopts the same functional form.

I The kernel functions in RVM are treated
simply as a set of basis functions without
many restrictions imposed on SVM kernels.

I RVM uses a fully probabilistic framework.

I RVM uses significantly fewer basis functions
then SVM.
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Problem formulation

{xn, tn}N
n=1

is a training data set.

The targets are samples from the model with
additive noise

tn = y(xn; w) + εn

where

y(x,w) =
N

∑

i=1

wi · K(x,xi) + w0
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Problem formulation

εn is assumed to be zero-mean Gaussian noise
process with variance σ2.
Thus,

p(tn|x) = N (tn|y(xn), σ
2)

We rewrite the kernel sum in the following form:

N
∑

i=1

wi · K(x,xi) + w0 =
N

∑

i=0

wi · φi(x) = wTφ(x)

where φ0(x) ≡ 1
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Problem formulation

The likelihood of the complete data set can be
written as follows:

p(t|w, σ2) =

(

1

2πσ2

)
N

2

exp

{

−
1

2σ2
‖t − Φw‖2

}

where
t = [t1, t2, . . . , tN ]T , N × 1 vector;
w = [w0, w2, . . . , wN ]T ; (N + 1) × 1 vector;
Φ = [φ(x1),φ(x2), . . . ,φ(xN)]T , N × (N + 1)
matrix.
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Priors

To avoid over-fitting, we “constrain” the parameters
by defining an explicit prior over them.

p(w|α) =
N
∏

i=0

N (wi|0, α
−1

i )

with α being a vector of (N +1) hyperparameters.
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Priors

To complete the specification of priors, we define a
hyperprior over α as well as over the noise
variance σ2.

p(α) =
N
∏

i=0

Gamma(αi|a, b)

p(β) = Gamma(β|c, d), where β ≡ σ−2
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Priors - graphical model
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Learning RVM
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Inference

How it should work: for the given test point x∗ we
should correctly predict the target t∗

p(t∗|t) =

∫

p(t∗|w,α, σ2) · p(w,α, σ2|t)dwdαdσ2

Where p(w,α, σ2|t) is

p(w,α, σ2|t) =
p(t|w,α, σ2) · p(w,α, σ2)

p(t)

This form has no analytical solution.
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Inference

This is the way around :

p(w,α, σ2|t)

p(w|t,α, σ2)·p(α, σ2|t)

“=”

p(t|w,σ2)·p(w|α)
∫

p(t|w,σ2)·p(w|α)dw

“Bayes”

∝ p(t|α, σ2)p(α)p(σ2)
≈ δ(αMP , σ2

MP )

“Bayes”
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Inference - posterior over w

The posterior over the weight is expressed as

p(w|t,α, σ2) =
p(t|w, σ2) · p(w|α)

∫

p(t|w, σ2) · p(w|α)dw

Here, all the PDFs are Gaussian. Thus, we can ob-

tain the analytical expression for the posterior PDF

over the weights.
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Inference - posterior over w

The posterior over the weights is expressed as

p(w|t,α, σ2) =
1

(2π)
N+1

2 |Σ|
1

2

exp

{

−
(w − µ)T

Σ
−1(w − µ)

2

}

where

Σ = (σ−2
Φ

T
Φ + A)−1

A = diag(α0, α1, . . . , αN )

µ = σ−2
ΣΦ

T t
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Inference - predictive approximation

In case of p(α, σ2|t) we have to adopt some
approximations.
We exchange p(α, σ2|t) with a delta function at its
mode in a sense that

p(t∗|t)MP =

∫

p(t∗|α, σ2)δ(αMP , σ2

MP )dαdσ2 ≈
∫

p(t∗|α, σ2)p(α, σ2|t)dαdσ2 = p(t∗|t)

is a good approximation
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Inference - predictive approximation

Relevance vector “learning” thus becomes the
search for the hyperparameters that maximize

p(α, σ2|t) ∝ p(t|α, σ2)p(α)p(σ2)

with respect to α and σ2.
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Inference - marginal likelihood

In case of uniform priors, we only have to
maximize the term

p(t|α, σ2) =

∫

p(t|w, σ2)p(w|α)dw =

=
(2π)−

N

2

|σ2I + ΦA−1ΦT |
1

2

exp

{

−
tT (σ2

I + ΦA
−1

Φ
T )−1t

2

}

Its maximization is known as type-II maximum like-

lihood method.

Relevance Vector Machines – p.26/33



Inference - optimization

In case of non-uniform priors, the maximization is
a bit more complex, but finally leads to the iterative
re-estimation formulas:

αnew
i =

(1 − αiΣii) + 2a

µ2

i + 2b
,

(σ2)new =
‖t − Φµ‖2 + 2d

N −
∑

i(1 − αiΣii) + 2c
,

Σij and µi are the scalar values taken from the cor-
responding matrix and vector.
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Inference - the learning algorithm

I

αnew
i =

(1 − αiΣii) + 2a

µ2

i + 2b
,

(σ2)new =
‖t − Φµ‖2 + 2d

N −
∑

i(1 − αiΣii) + 2c
,

I

Σ = (σ−2
Φ

T
Φ + A)−1

A = diag(α0, α1, . . . , αN )

µ = σ−2
ΣΦ

T t
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Inference - introducing sparsity

A large proportion of αi are driven to large values
(in principle they become infinite) during the
learning procedure.

Thus, p(wi|t,α, σ2) becomes highly peaked around
zero – i.e. we are a posteriori “certain” that these
wi are zero.

The vectors xi for which wi are not zero are called
relevance vectors.
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Inference - Making predictions

Having found the maximizing values αMP and
σ2

MP , we can now compute predictions

p(t∗|t,αMP , σ2

MP ) =

=

∫

p(t∗|w, σ2

MP ) · p(w|t,αMP , σ2

MP )dw

Both terms in the integrand are Gaussian, thus
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Inference - Making predictions

the result can be readily computed to be

p(t∗|t,αMP , σ2

MP ) = N (t∗|y∗, σ
2

∗)

with

y∗ = µTφ(x∗)

σ2

∗ = σ2

MP + φ(x∗)
T
Σφ(x∗)
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RVM example
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Conclusions

I Generalization is typically very good.

I Learned models are typically highly sparse.

I There are no constraints imposed on the basis
functions.

I Different input scales for input variable are
possible.
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