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Course Topics

Topics Speaker Date

Introduction to GMs Franz Pernkopf 11-04-05
Parameter and Structure Learning Stefan Tertinek
Exact Inference Rene Hirschmanner
Generalized Belief Propagation available
Loopy Belief Propagation available
Variational Inference available
Sampling available
Linear Gaussian Models / HMM available (Tuan ?)
Particle Filter Dimitri Shutin
Factor Graphs Thomas Blocher
Bayesian Network Classifiers Cornelia Falch, Markus Noisternig
GM Tools with application 
to String Edit Distance Stefan Petrik
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Taxonomy of GM
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Directed GM (Bayesian Network)

• A Bayesian Network consists of

1. a  network structure G
• Nodes: Random variables
• Arcs (edges): Dependency between random variables
• directed acyclic graph (DAG)

2. Symbol       represents a set of parameters which quantify the network
• a set of (conditional) probability distributions
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Directed GM (Bayesian Network)
• Conditional independence: Each variable is independent of its non-

descendants in the network given its parents.

• Joint probability distribution:

• A Bayesian network encodes the joint 
probability distribution over a set of variables.
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Directed GM (Bayesian Network)
• Dependence relationships in DAGs are modeled by a separability criterion 

called d-separation.
• d-separation: Two variables A and B are d-separated if for all paths 

between A and B there is an intermediate variable V such that either
– The connection is serial or diverging and the state of V is known.
– The connection is converging and neither V nor any of Vs descendants have 

received evidence.
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Inference

• Probabilistic inference means computing

• “Evidence “ means observing the values of certain nodes
• Absorbing evidence divides the units of the network into two groups:

– Evidence variables       : Set of evidence variables (value is known)
– Query variables       : Set of query variables 

• Exact Inference
– Junction Tree Algorithm (Message Passing)

• Approximate Inference 
– Variational Inference
– Loopy Belief Propagation
– Stochastic Sampling Methods (MCMC)
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Learning Bayesian Networks

Data
+

Information
Learner

• The learning problem:

Structural EMParameter estimation: 
Inference (EM),…

Incomplete 
Data

Search model space (HCS, GA,…)
Criterion: Classification Rate (CR), 
Conditional Mutual Information 
(CMI),…

Parameter estimation:
Maximum likelihood (ML), 
Maximum a-posterior 
(MAP), …

Complete 
Data

Unknown StructureKnown Structure
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Learning Gaussian Mixture Models

• A Gaussian Mixture Model (GMM) is a distribution composed of  
weighted Gaussian distributions.

• Problem of EM for learning GMM:
– Solution depends on initial parameters
– EM algorithm assumes that the number of Gaussian components is known

• Combination of  EM and GA (GA-EM)
– “Solves” the initialization issue 
– Employ the EM algorithm within the GA framework to speed up the 

optimization
– Minimum Description Length (MDL) for determination of the number of 

components
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