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Overview
� Introduction to ASR

� Pronunciation Modeling

� Language Modeling

� Basic Speech Models

� Advanced Speech Models

� Summary
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Introduction to ASR
� Find most likely sequence of words w∗, given observations X

w∗ = arg max
w

(P (w|X)) = arg max
w

P (w) · P (X|w)

P (X)

� w = w1...wm : sequence of words

� X : feature vectors

� P (w) : language model

� P (X|w) : acoustic model

� Tasks in ASR:

� acoustic modeling

� pronunciation modeling

� language modeling
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Pronunciation Modeling
� Map base-forms (word dictionary based pronunciations) to surface forms

(actual pronunciations)

� Use 1st order Markov chain for representation

� Phones are shared across multiple words: /b/ae/g/ ↔ /b/ae/t/

� Solution 1: Expanded model

� increase state space of Qt, to model not only phone but also position in

word

� condition on word Wt and sequential position of phone St : P (Qt|Wt, St)
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Pronunciation Modeling
� Solution 2: Parameter-tied model

� avoids expanded state space by parameter tying and sequence control

� p(St+1 = i|Rt, St) = δi,f(Rt,St) St+1 =







St + 1 if Rt = 1

St else
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Pronunciation Modeling
� Solution 3: Decision trees

� input node I, output node O, decision RVs Ri

� P (Dl = i|I) = δi,fl(I,d1:l−1) with decisions dl = fl(I, d1:l−1)
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Language Modeling
� Predict next word from history of previous words

� Joint distribution: p(W1:T ) =
n
∏

t=1
p(Wt|W1:t−1)

� Restrict to history of last n − 1 words: p(Wt|Wt−n+1:t−1) = p(Wt|Ht)

� Problem: sparse data

� Solution: smoothing

p(wt|wt−1, wt−2) = α3(wt−1, wt−2)f(wt|wt−1, wt−2)

+ α2(wt−1, wt−2)f(wt|wt−1)

+ α1(wt−1, wt−2)f(wt)
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n-Grams
� Switching parents: value-specific conditional independence

P (C|M1, F1,M2, F2) =
∑

i

P (C|Mi, Fi, S = i)P (S ∈ Ri)
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n-Grams
� Resulting model:

p(wt|wt−1, wt−2) = α3(wt−1, wt−2)f(wt|wt−1, wt−2)

+ α2(wt−1, wt−2)f(wt|wt−1)

+ α1(wt−1, wt−2)f(wt)
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Class-Based Language Model
� Idea: cluster words together and form a Markov chain over the groups

� Much lower dimensional class variables Ci than high-dimensional word

variables Wi

� Syntactic, semantic or pragmatic grouping:

� parts-of-speech: nouns, verbs, adjectives, determiners, ...

� numerals, colors, sizes, physical values, ...

� animals, plants, vegetables, people, ...
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Class-Based Language Model
� Introduce token unk with non-zero probability for unknown words

� Vocabulary W = {unk} ∪ S ∪M with pml(w ∈ W) = N(w)
N

� Constraint: p(unk) = 0.5 ∗ pml(S) = 0.5 ∗
∑

w∈S pml(w)

� Resulting probability model:

pd(w) =



















0.5pml(S) if w = unk

0.5pml(w) if w ∈ S

pml(w) otherwise

� Condition on current class: pd(w|c)
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Class-Based Language Model
� Graphical model:

� Additional observed variable Vt which is always Vt = 1

� Kt, Bt : switching parents

� Ct : word class Wt : word

� Show p(wt, Vt = 1|ct) = pd(wt|ct)
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Class-Based Language Model
� Conditional distributions:

p(kt|ct) =







p(S|ct) if kt = 1

1 − p(S|ct) otherwise
p(Bt = 0) = p(Bt = 1) = 0.5

pM (w|c) =







pml(w|c)
p(M|c) if w ∈ M

0 otherwise
pS(w|c) =







pml(w|c)
p(S|c) if w ∈ S

0 otherwise

p(wt|kt, bt, ct) =



















pM (wt|ct) if kt = 0

pS(wt|ct) if kt = 1 and bt = 1

δ{wt=unk} if kt = 1 and bt = 0
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Basic Speech Models
� Hidden Markov Model (HMM):

� encompasses acoustic, pronunciation, and language modeling

� hidden chain corresponds to seq. of words, phones and sub-phones

� hidden states Q1:T and observations X1:T

� Qt:T⊥Q1:t−2|Qt−1 and Xt⊥{Q¬t,X¬t}|Qt

� either DGM or UGM: moralizing the graph introduces no new edges

and result is already triangulated
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Basic Speech Models
� HMMs with mixture-of-Gaussians output:

� explicit modeling of mixture variable

p(Xt|Qt = q, Ct = i) = N (xt;µq,i,Σq,i) p(Ct = i|Qt = q) = C(q, i)

� Semi-continuous HMMs:

� single, global pool of Gaussians, each state corresponds to a particular

mixture over the pool

p(x|Q = q) =
∑

i

p(C = i|Q = q)p(x|C = i)
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Basic Speech Models
� Auto-regressive HMMs (AR-HMM):

� relaxes conditional independence constraint 2:

Xt−1 helps predicting Xt

� result: models with higher likelihood

� note: not to be confused with linear predicitve HMMs
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Basic Speech Models
� Input/Output HMMs (IOHMM):

� variables corresponding to input and output at each time frame

� given input feature stream X1:T , try to find E[Y |X]

� CPD for Qt as 3-dim array: P (Qt = j|Qt−1 = i,Xt = k) = A(i, j, k)

� promising for speech enhancement
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Advanced Speech Models
� Factorial HMMs:

� distributed representation of the hidden state

� special case HMM with tied parameters and state transition restrictions

� conversion to HMM possible, but inefficient:

complexity changes from O(TMKM+1) to O(TK2M )

GMs for Automatic Speech Recognition – p. 18



GRAZ UNIVERSITY OF TECHNOLOGY

Signal Processing & Speech Communication Lab

Advanced Speech Models
� Mixed-memory HMMs:

� like factorial HMM, but fewer parameters

(two 2-dimensional tables instead of single 3-dimensional one)

� cond. independence: Qt⊥Rt−1|St = 0 and Qt⊥Qt−1|St = 1

p(Qt|Qt−1, Rt−1) = p(Qt|Qt−1, St = 0)P (St = 0)

+ p(Qt|Qt−1, St = 1)P (St = 1)
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Advanced Speech Models
� Segment models:

� each HMM state can generate sequence of observations, not just single one

� overall joint distribution: p(X1:T = x1:T ) =
∑

τ

∑

q1:τ

∑

l1:τ

τ
∏

i=1

p(xt(i,1)), p(xt(i,2)), ..., p(xt(i,li)), li|qi, τ)p(qi|qi−1, τ)p(τ)

� observation segment distribution: p(x1, x2, ..., xl, l|q) = p(x1, x2, ..., xl|l, q)p(l|q)

� plain HMM if p(x1, x2, ..., xl|l, q) =
∏l

j=1 p(xj |q) and p(l|q) geometric dist.
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Advanced Speech Models
� Buried Markov Model (BMM):

� HMM’s cond. independence structure may not accurately model data

⇒ additional edges between observation vectors needed

� Idea: measure contextual information of a hidden variable

� conditional mutual information:

additional information X<t provides about Xt not already provided by Qt

I(Xt;X<t|Qt) =
∑

q

I(Xt;X<t|Qt = q)p(Qt = q) =







> 0 add edge

0 no change

� underlying Markov chain in HMM is further hidden (buried) by specific

cross-observation dependencies
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Advanced Speech Models
� Buried Markov Model (BMM):

� for learning, measure discriminative mutual information between X and

its potential set of parents Z

� EAR (explaining away residual): EAR(X,Z) = I(X;Z|Q) − I(X;Z)

� arg max
Z

EAR(X,Z) ⇒ optimized posterior probability for Q
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Summary
� Some well-known speech models presented in terms of graphical models

� Used for acoustic, pronunciation and language modeling

� Standard HMM approach can be improved by GMs with relaxed conditional

independence statements

� More models available...
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