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Introduction (1/2)

I Statistical Modeling Aspects

• Characterization of real-world signals in terms of signal models:

–> Theoretical description; Learning ability.

• Choices for types of signal models:

–> Deterministic models; Stochastic models (Poisson, HMM, ...).

• Why use HMMs ?

–> Answer the question: "If I have a set of output symbols, what was the

sequence of states & transitions that resulted in those output symbols ?"

• HMM is a powerful modern statistical technique. Why ?

• Identification & manipulation of conditional independence assumptions.
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Introduction (2/2)

I Graphical Modeling Aspects

• Using of GRAPH to represent independent structure of probability models.

• Relationships between conditional independence in probability model &

structural properties of graph.

• HMMs as DAGs:

- Inference (forward-backward algorithm)

- MAP (Viterbi algorithm)

–> Graphical modeling provides an automatic method. How ?

- Inference (Jensen, Lauritzen & Oleson’s algorithm)

- MAP (Dawid’s algorithm)

• Kalman Filter as DAGs.
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Discrete Markov Processes
From Markov Chain to HMM

• Probabilistic description:

P (qt+1 = Sj |, qt = Si, qt−1 = Sk, ...)

= P (qt+1 = Sj |, qt = Si).

• –> Observable Markov Model

since output is set of states.

• Markov model where observation

is a probabilistic function of state.

• HMM: underlying stochastic pro-

cess (that is hidden) can only be

observed through another set of

stochastic processes that produce

the sequence of observations.
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Discrete Markov Processes
Elements of an HMM

• N: number of states in the model. (Individual states as S = S1, S2, ..., SN .

State at time t as qt.)

• M: number of distinct observation symbols per state. (Individual symbols as

V = V1, V2, ..., VM .)

• A = aij : state transition probability distribution

ai,j = P (qt+1 = Sj | qt = Si), 1 ≤ i, j ≤ N.

• B = bj(k): observation symbol probability distribution in state j
bj(k) = P (Vk at t | qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤M.

• π = πi: initial state distribution
πi = q1 = Si, 1 ≤ i ≤ N.
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Discrete Markov Processes
Generating observation sequence by HMM

. – p.7/29



GRAZ UNIVERSITY OF TECHNOLOGY

Signal Processing & Speech Communication Lab

Problems & Solutions for HMM
Three basic problems of HMMs

Problems

• Problem 1: Given O = O1O2...OT , and a

model λ = (A,B, π), compute P (O | λ) ?

• Problem 2: Given O = O1O2...OT , and

a model λ = (A,B, π), choose state se-

quence Q = q1q2...qT which best explain

O ?

• Problem 3: Adjust model parameters λ =

(A,B, π) to maximize P (O | λ) ?

Interpretation

• Evaluation / Scoring.

–> Forward-Backward.

• Find the optimal state se-

quence / Decoding.

–> Viterbi.

• Reevaluation / Learning.

–> Baum-Welch (EM).

(Connection to Inference and MAP problems in Graphical Model ?)
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Problems & Solutions for HMM
Assumptions in the theory of HMMs

• Markov assumption: "The next state is dependent only upon the current

state" ai,j = P (qt+1 = Sj | qt = Si) 1 ≤ i, j ≤ N.

• Stationarity assumption: "The state transition probabilities are independent

of the actual time at which the transitions takes place"

P (qt1+1 = Sj | qt1 = Si) = P (qt2+1 = Sj | qt2 = Si)

• Statistical independence assumption: "The current observation is

statistically independent of the previous observations"

O = O1O2...OT ; Q = q1q2...qT

P (O | Q,λ) = ΠT
t=1P (Ot | qt, λ)
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Problems & Solutions for HMM
Solution to Problem 1: Straightforward method (1/3)

• Accounting for every possible state sequence Q = q1q2...qt

• Probability of a state sequence Q is:

P (Q | λ) = πq1aq1q2aq2q3 ...aqT−1qT
.

• Probability of the observation sequence O given state Q:

P (O | Q,λ) = ΠT
t=1P (Ot | qt, λ) = bq1(O1)bq2(O2)...bqT

(OT ).

• Probability of O: summing joint probability P (O,Q | λ) over Q:

P (O | λ) = Σ
all Q

P (O,Q | λ) = Σ
all Q

P (O | Q,λ)P (Q | λ).

P (O | λ) = Σ
all Q

πq1bq1(O1)aq1q2bq2(O2)...aqT−1qT
bqT

(OT ).

• Complexity O(2TNT ) –> computationally intractable.
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Problems & Solutions for HMM
Solution to Problem 1: F-B algorithm (2/3)

• Consider forward variable αt(i):

αt(i) = P (O1O2...Ot, qt = Si | λ).

(probability of the partial observation sequence O & state Si at time t).

• Solving for αt(i) inductively:
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Problems & Solutions for HMM
Solution to Problem 1: F-B algorithm (3/3)

• Requires complexity O(N 2T ) –> reduce computational load significantly.

• The Forward algorithm is based on trellis structure.

• With N states (N nodes at each time slot), all possible state sequences are

formed without regarding to how long the observation sequence.
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Problems & Solutions for HMM
Solution to Problem 2: Viterbi algorithm (1/3)

• There are several possible optimality criteria: difficulty to select.

• One possible criterion: choose the states qt which are individually most likely.

• Probability of being in state Si at time t given O,λ:

γ(i) = P (qt = Si | O,λ).

• Find the individually most likely state qt at time t:

qt = argmax
1≤ i≤N

[γt(i)] 1 ≤ t ≤ T

• The solution determines the most likely state at every instant without
regarding to the probability of occurrence of sequence of states.
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Problems & Solutions for HMM
Solution to Problem 2: Viterbi algorithm (2/3)

• Optimality criterion: find the single best state sequence Q given O.

• Need to determine:

δt(i) = max
q1,q2,...,qt−1

P [q1, q2, ..., qt = Si, O1, O2, ..., Ot | λ]

(The best score along a single path, at time t, which accounts for the first t

observations & ends in state Si)

• By induction, we get for time t+ 1:

δt+1(j) = [max
i

δt(i)aij ]bj(Ot+1)

• The state sequence is gotten by tracking the argument ψt(j).

• Difference is the Maximization instead of Summing procedure (Forward)
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Problems & Solutions for HMM
Solution to Problem 2: Viterbi algorithm (3/3)

• Idea: find the most likely path for each intermediate state.

• At each time t, only the most likely path leading to each state Sj survives.
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Problems & Solutions for HMM
Solution to Problem 3: Baum-Welch (1/3)

• Locally optimize λ to best describe O –> iterative procedure Baum-Welch.

• Consider backward variable βt(i):
βt(i) = P (Ot+1Ot+2...OT | qt = Si, λ).

(probability of the partial observation sequence from t+ 1 to the end).

• Solving for βt(i) inductively:
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Problems & Solutions for HMM
Solution to Problem 3: Baum-Welch (2/3

• To describe procedure for reestimation, define variable ξt(i, j), the probability

of being in state Si at time t & state Sj at time t+ 1:
ξt(i, j) = P (qt = Si, qt+1 = Sj | O,λ).

. Rewrite ξt(i, j) in form of F-B vari-

ables:

. The sequence of operations to

compute joint event ξt(i, j):
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Problems & Solutions for HMM
Solution to Problem 3: Baum-Welch (3/3)

• Model λ is more likely than model λ. (P (O | λ) > P (O | λ)).

• Maximizing Q(λ, λ) = ΣQP (Q | O,λ)log[P (O,Q | λ] –> increase likelihood.

• Equivalence to EM algorithm: E (estimation) step is calculation of Q(λ, λ), M

(modification) step is the maximization over λ.
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Connections to Graphical Model
HMMs as DAGs

• Goal: Inference (F-B alg.) & MAP (Viterbi alg.) for HMMs are special cases of

more general Inference algorithms for GMs.

• HMM is a probability model & has a direct representation as a simple GM.

• –> These problems can be solved by standard algorithms of GM :

I Inference alg. for DAGs: JLO’s alg. (developed by Jensen, Lauritzen, Oleson

(1990)).

I MAP alg. for DAGs: Dawid’s alg. (developed by Dawid (1992)).
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Connections to Graphical Model
Review Exact Inference

The JLO and Dawid algorithms operate as a two-step process:

1. Construction step: The directed graph is moralized, triangulated, then a

junction tree is formed.

2. Propagation step: Junction tree is used in a local message-passing

manner to propagate the effects of observed evidence.

–> Resulted junction tree for HMM (final clique (HN−1,HN ) is the root clique):
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Connections to Graphical Model
Relationship between F-B & JLO (1/3)

• Notation: subscript indicate used variables to derive potential functions.

• Consider the portion of the junction tree, flow from (Oi,Hi) to (Hi−1,Hi)

• Collect phase: Local message

passing in junction tree

1a. Updated potential on Hi:

f∗Oi
(hi) = p(hi, o

∗
i )

1b. Update factor from Hi into clique

(Hi−1,Hi):

λOi
(hi) =

p(hi, o
∗
i )

p(hi)
= p(o∗i | hi)

1c. It is absorbed into (Hi−1,Hi) :

f∗Oi
(hi−1, hi) = p(hi−1, hi)λOi

(hi) =

p(hi−1, hi)p(o
∗
i | hi)
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Connections to Graphical Model
Relationship between F-B & JLO (2/3)

2a. Updated potential on Hi−1: f∗
Φ1,i−1

(hi−1) = p(hi, φ
∗
1,i−1)

2b. Update factor from Hi−1 into clique (Hi−1,Hi):

λΦ1,i−1
(hi−1) =

p(hi, φ
∗
1,i−1)

p(hi−1)

2c. It is absorbed into (Hi−1,Hi) :

f∗
Φ1,i

(hi−1, hi) = f∗Oi
(hi−1, hi)λΦ1,i−1

(hi−1) = p(o∗i | hi)p(hi | hi−1)p(hi, φ
∗
1,i−1)

3. New potential on Hi for the flow from clique (Hi−1,Hi) to (Hi,Hi+1):

f∗
Φ1,i

(hi) = Σ
hi−1

f∗
Φ1,i

(hi−1, hi) = p(o∗i | hi) Σ
hi−1

p(hi | hi−1)f
∗
Φ1,i−1

(hi−1)

Comparing with: αt+1(j) = bj(Ot+1)Σ
N
i=1αt(i)aij (Forward alg.)

I Proceeding recursively to obtain result at the root clique.
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Connections to Graphical Model
Relationship between F-B & JLO (3/3)

• Distribution phase: Local

message passing in junction

tree

• By the similar method, achieve equivalence between Backward & JLO.

• Get the update factor on separator Hi:

λ∗
Φi+1,N

(hi) = Σ
hi−1

p(hi | hi+1)p(o
∗
i+1 | hi+1)λ

∗
Φi+2,N

(hi+1)

• Comparing with Backward alg. :

βt(j) = ΣN
j=1aijbj(Ot+1)βt+1(j)
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Connections to Graphical Model
Relationship between Viterbi & Dawid

• Similarly, applying the collection phase, followed by distribution phase.

• Change: Marginalization operations are replaced by Maximization.

• –> Obtain the new potential on separator from (Hi−1,Hi) to (Hi,Hi+1):

f̂Φ1,i
(hi) = max

hi−1

f̂Φ1,i
(hi−1, hi) =

p(o∗i | hi)max
h1,i−1

[
p(hi | hi−1)p(hi−1, h1,i−2, φ

∗
1,i−1)

]

• Comparing with δ in Viterbi alg. :

δt(j) = max
1≤ j≤N

bj(Ot)[δt−1(i)aij ]

• Proceeding recursively untill root clique, one can get the likelihood of

obervation given the most likely state sequence.
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Kalman Filter (LGMs)
Linear Dynamic System (LDS)

• State Space Model (SSM): hidden state variables are continuous.

• LDS is the special case of SSM with the linear functions & the noise term are

Gaussian.
xt = Axt−1 + ωt

yt = Axt + ωt

ωt ∼ N(0, Q)

υt ∼ N(0, R)
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Kalman Filter (LGMs)
Kalman Filter Models (KFMs)

• KFM is also known as LDS, SSMs.

• The transition & observation functions are linear-Gaussian:
P (Xt = xt | Xt−1 = xt−1, Ut = u) ∼ N(xt;Axt−1 +Bu+ µx,Q)

P (Yt = y | Xt = x,Ut = u) ∼ N(y;Cx+Du+ µy,R)

• Represent as linear functions:

Xt = Axt−1 +Bu+ Vt

where Vt ∼ N(µx, Q) is a Gaussian noise term.

Yt = CXt +DUt +Wt

where Wt ∼ N(µy, R) is another Gaussian noise term assumed independent

of Vt
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Kalman Filter (LGMs)
Kalman Inference

• Kalman filter to perform exact online inference in LDS.

• Equivalence to the forward alg. for HMMs:

P (Xt = i | y1:t) = αt(i) ∝

P (yt | Xt = i)ΣjP (Xt = i | Xt−1 = j)P (Xt−1 = j | y1:t−1).

• The Rauch-Tung-Strievel smoother to perform exact offline inference in LDS.

• Equivalence to the F-B alg. for HMMs:

P (Xt = i | y1:T ) = γt(i) ∝ αt(i)βt(i).
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Conclusions
• Structure of Hidden Markov Model.

• Three basic problems of HMM.

• Solutions: Forward-Backward, Viterbi, Baum-Welch

algorithms.

• Relationships between HMM & Graphical Models in term

of Inference problems: JLO & Dawid algorithms.

• Short introduction about Kalman filter.
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