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Content of the talk
Concept of Sequential Bayesian estimation.

Linear-Gaussian case: Kalman filter.
Nonlinear case: EKF, UKF.

Particle filters.
Monte Carlo methods and Importance sampling.
MC for sequential estimation: SIS algorithm.
Resampling: SIR algorithm.

Conclusions.
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Sequential Bayesian estimation
A system is described by a state vector xn

The evolution of the state sequence {xn, n ∈ N}

xn = fn(xn−1,vn−1) xn ∈ C
Nx

Observation of the system output zn is a function of the
system state xn

zn = hn(xn,wn), zn ∈ C
Nz

wn ∈ C
Nw and vn ∈ C

Nv , n ∈ N, are i.i.d noise sequences.

Functions hn(·) and fn(·) are not necessarily linear.
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Sequential Bayesian estimation, cont’d
Our task is to estimate the current state xn at time n given
measurements z1:n up to time n:

Compute p(xn|z1:n), assuming p(x0|z0) ≡ p(x0)

Let us assume p(xn−1|zn−1) is available. Then,

Prediction Step:

p(xn|z1:n−1) =

∫

p(xn|xn−1)p(xn−1|z1:n−1)dxn−1

Update Step:

p(xn|z1:n) =
p(zn|xn)p(xn|z1:n−1)

p(zn|z1:n−1)
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Sequential Bayesian estimation, cont’d

1) p(xn|z1:n−1) =

∫

p(xn|xn−1)p(xn−1|z1:n−1)dxn−1

Prediction eq.

xn = fn(xn−1,vn−1) State trans.

p(x0|z0) = p(x0) Prior

2) p(xn|z1:n) =
p(xn|z1:n−1)p(zn|xn)

p(zn|z1:n−1)
Update eq.

zn = hn(xn,wn)

Measurement eq.
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Linear-Gaussian case: Kalman filter.
It is generally assumed that:

wn and vn, are multivariate Gaussian random variables
with known means and covariance matrices.

hn(·) is a linear function of xn and wn.

fn(·) is a linear function of xn−1 and vn−1

That can be rewritten as

xn = Fnxn−1 + vn−1

zn = Hnxn + wn

In this case, Prediction and Update equations can be
evaluated analytically! → Kalman filter.
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Nonlinear case.
If hn(·) or fn(·) are nonlinear then no closed-form solution
exists for Prediction and Update equations.

Solution: Local linearization of hn(·) and fn(·):

F̂n =
dfn(x)

dx

∣

∣

∣

∣

∣

x=m
n−1|n−1

Ĥn =
dhn(x)

dx

∣

∣

∣

∣

∣

x=m
n|n−1

where m·|· is last state estimate. Then, application of Kalman
filter is straightforward.

Unscented Kalman filter.
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Particle filters.
What if the approximations are not satisfactory?

Nonlinearity is to strong.

The densities are multimodal, i.e. Gaussian approximation
is not appropriate.

No closed-form derivative of the nonlinear transformations
can be computed.

To approximate unknown PDF, Monte Carlo methods can be
employed.

The key idea: approximate the required PDF with a
set of random samples with associated weights and

compute estimates based on those samples.
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Monte Carlo methods.
Monte Carlo are computational techniques that approximates
a desired density by means of drawing random samples from
the corresponding distribution.

Two basic MC problems:

Problem 1: Generate samples {x(r)}R
r=1 from a given

distribution p(x)

Problem 2: Estimate expectation of functions under this
distribution, i.e.

f = 〈f(x)〉 =

∫

f(x)p(x)dx, → f ≈ 1

R

R
∑

r=1

f(x(r))
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Importance sampling.
Importance sampling solves Problem 2.

1. p(x) = p̂(x)/Z is known up to a normalizing constant Z and
p̂(x) can be evaluated at all x.

2. p(x) is two complicated to directly sample from.

3. There is q(x) = q̂(x)/Zq (Importance density) from which
we can sample and q̂(x) can be evaluated at all x.

� ��� ���� ��	 
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wr = p̂(xr)/q̂(xr)

Compute the required
expectation

〈f(x)〉 =

∑

r wrf(xr)
∑

r wr
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From IS to sequential estimation.
Our goal is to get p(x0:n|z1:n) and from it 〈xn〉.
Drawing samples from p(x0:n|z1:n) directly is difficult.

We select easier importance density q(x0:n|z1:n) to draw
samples xr

0:n, r = 1 . . . R, from it.

wr
n =

p(xr
0:n|z1:n)

q(xr
0:n|z1:n)

In sequential estimation we want to obtain p(x0:n|z1:n)
based on p(x0:n−1|z1:n−1)

How to incorporate previous weights wr
n−1 in computation

of the new weights wr
n?

Sequential Bayesian estimation and Particle filters. – p.11/22



From IS to sequential estimation, cont’d.
First, we factorize importance density q(x0:n|z1:n) as

q(x0:n|z1:n) = q(xn|x0:n−1,z1:n)q(x0:n−1|z1:n−1)

Then, we consider density of interest p(x0:n|z1:n):

p(x0:n|z1:n) =p(x0:n|zn,z1:n−1) =

p(zn|x0:n,z1:n−1)p(x0:n|z1:n−1)
∫

(· · · )dx0:n
= · · ·
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From IS to sequential estimation, cont’d.
p(zn|x0:n,z1:n−1)p(x0:n|z1:n−1)

∫

(· · · )dx0:n
=

p(zn|x0:n,z1:n−1)p(xn,x0:n−1|z1:n−1)
∫

(· · · )dx0:n
=

p(zn|x0:n,z1:n−1)p(xn|x0:n−1,z1:n−1)p(x0:n−1|z1:n−1)
∫

(· · · )dx0:n

x0 x1

z1

x2

z2

xn

zn

p(zn|x0:n,z1:n−1) = p(zn|xn)
p(xn|x0:n−1,z1:n−1) = p(xn|xn−1)

p(x0:n|z1:n) ∝ p(zn|xn)p(xn|xn−1)p(x0:n−1|z1:n−1)
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From IS to sequential estimation, cont’d.
Now we put this expression into the formula for importance
coefficients

wr
n =

p(xr
0:n|z1:n)

q(xr
0:n|z1:n)

=
p(zn|xr

n)p(xr
n|xr

n−1)p(xr
0:n−1|z1:n−1)

q(xr
n|xr

0:n−1,z1:n)q(xr
0:n−1|z1:n−1)

=

p(zn|xr
n)p(xr

n|xr
n−1)

q(xr
n|xr

0:n−1,z1:n)
· wr

n−1

If we are only interested in p(xn|z1:n), then it makes sense to
select importance density as q(xr

n
|xr

0:n−1
,z1:n) = q(xr

n
|xr

n−1
,zn).

Then,

wr
n = wr

n−1 ·
p(zn|xr

n)p(xr
n|xr

n−1)

q(xr
n|xr

n−1,zn)
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Sequential Importance Sampling (SIS).

function [{xr
n, wr

n}R
r=1] = SIS

(

{xr
n−1, w

r
n−1}R

r=1,zn

)

for r = 1 : R
Draw xr

n from q(xr
n|xr

n−1,zn)

Compute wr
n

wr
n = wr

n−1 ·
p(zn|xr

n)p(xr
n|xr

n−1)

q(xr
n|xr

n−1,zn)
, wr

n = wr
n

/

∑

r

(wr
n)

end
The sought posterior p(xn|z1:n) is approximated

p(xn|z1:n) ≈
R

∑

r=1

wr
nδ(xn − xr

n)
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Sequential Importance Sampling (SIS).
Simple example:

System equations:

xn = fn(xn−1) + vn−1

zn = hn(xn) + en.

vn ∼ N (0, σ2
v), en ∼ Laplace(µe, σe)

p(zn|xr
n) =

1

σe

exp
{

− |(zn − hn(xr
n)) − µe|

σe

}

p(xr
n|xr

n−1) =
1√

2πσv

exp
{

− |xr
n − fn(xr

n−1)|2
2σ2

v

}
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Sequential Importance Sampling (SIS).
A common problem with SIS algorithm is degeneracy
phenomenon: all but several weights negligibly small.

To mitigate degeneracy problem one can

Increase the number of particles R to a very large number.

Properly choose the importance density q(·). This is a
crucial point in PF design!

q(xr
n|xr

n−1,zn) = p(xr
n|xr

n−1)

wr
n = wr

n−1 · p(zn|xr
n)

Markov Chain Monte Carlo.

Employ resampling schemes.
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Resampling schemes.
Resampling is aimed at amending degeneracy problem.

1 sampling index

p(i)

i

j

� �� �
�

�� �

 !" #
$

cdf

Example: R = 10, wr
n = 0.3, {xr

n}.
After resampling this will result (on average) in
Rj = 0.3 × 10 = 3 copies of xr

n, each having weight 1/R

E{Rj} = R · wj
n
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Resampling schemes.
{xr

n−1, w
r
n−1 ≡ R−1}

{xr
n−1, w

r
n−1}

Resampling

{xr
n, wr

n ≡ R−1}

{xr
n, wr

n}
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Sequential Importance Resampling (SIR).

function [{xr
n, wr

n}R
r=1] = SIS

(

{xr
n−1, w

r
n−1}R

r=1,zn

)

for r = 1 : R
Draw xr

n from q(xr
n|xr

n−1,zn)

Compute wr
n

wr
n = wr

n−1 ·
p(zn|xr

n)p(xr
n|xr

n−1)

q(xr
n|xr

n−1,zn)
, wr

n = wr
n

/

∑

r

(wr
n)

Resample particles {xr
n}, wr

n.
end
The sought posterior p(xn|z1:n) is approximated
p(xn|z1:n) ≈ ∑R

r=1 δ(xn − xr
n)/R

Sequential Bayesian estimation and Particle filters. – p.20/22



To conclude...
Monte Carlo assumption must hold: Posterior is well
represented by Dirac point-mass approximation.

Importance Sampling assumption: it is possible to obtain
samples from the posterior by sampling from a suitable
importance distribution.

Markov Chain Monte Carlo is often employed (’Smoothing
step’).

Suitable importance density is crucial.

Resolution is determined by R.

Check out other PF algorithms.
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To conclude...
Literature:

Sanjeev Arulampalam, Simon Maskell, Neil Cordon.
’A Tutorial on Particle Filters for On-line
Non-linear/Non-Gaussian Bayesian Tracking’.

Rudolph van der Merwe, Arnaud Doucet, Nando de
Freitas, Eric Wan.
’The Unscented Particle Filters’.
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