# Echo Cancellation in Digital Subscriber Line Systems

Christian Kranzler (0130000), Philipp Maria Glatz (0230605)

July 3, 2006



#### **Table of Contents**

- Table of Contents
- Abbreviations
- Introduction Adaptive Systems and DSL
- The Hybrid and the Echo Source
- Motivation of Echo Cancellation
- Echo Path Model and Canceller Requirements
- Cancellation Algorithms for Data Transmission
- Conclusion and Bibliography



#### **Abbreviations**

ADC ... Analog Digital Converter

**ADSL ... Asymmetric Digital Subscriber Line** 

**AEC ... Acoustic Echo Cancellation** 

DAC ... Digital Analog Converter

DSL ... Digital Subscriber Line

# Abbreviations (ct.)

FIR ... Finite Impulse Response

FTTH ... Fiber-To-The-Home

LMS ... Least Mean Square

**NEXT ... Near End Cross Talk Noise** 

POTS ... Plain Old Telephone Service

**PSTN** ... Public Switched Telephone Network

SNR ... Signal to Noise Ratio

ntroduction - Adaptive Systems

#### Introduction - DSL

- DSL uses local loop of POTS
- Possible by using frequency band over speech band (300Hz to 3400Hz)
- DSL network consists of Central Office and DSL modem
- Using higher frequency band causes damping, available data rate depends on local loop length



ntroduction - Adaptive Systems

#### Introduction - DSL (ct.)

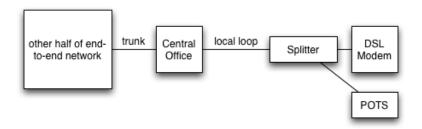



Figure: Typical DSL Network

Introduction - Adaptive Systems

# Introduction - Adaptive Systems

- $\bullet$  Conditions of telefon network change over time  $\to$  adaptive filter
- Principle: start at a specified condition and find good approach by computing parameters iteratively
- Several algorithms exist, each for a special application field

Introduction - Adaptive Systems

# Introduction - Adaptive Systems (ct.)

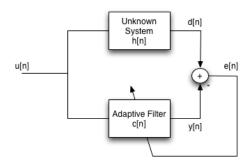



Figure: Adaptive System

Introduction - Adaptive Systems

# Introduction - Adaptive Systems (ct.)

- Most common implementation uses LMS algorithm
- Adapts to minimum mean square error  $J(c) = e[n]^2$
- Error surface is N + 1-dimensional paraboloid
- Optimal solution at bottom of bowl



Introduction - Adaptive Systems

# Introduction - Adaptive Systems (ct.)

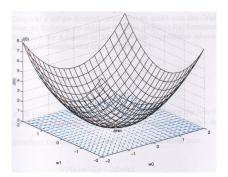



Figure: Mean Squared Error Surface (N = 2), taken from [6]



Introduction - Adaptive Systems

# Introduction - Adaptive Systems (ct.) - The optimal Solution

- Initialize coefficient vector c[n]
- Go iteration step by computing negative gradient of mean square error
- Done long enough, coefficient vector converges to optimal solution
- Optimal solution at bottom of bowl



Introduction - Adaptive Systems

# Introduction - Adaptive Systems (ct.)

The equations of the steepest descent are the following:

• 
$$e[n] = y[n] - d[n]$$

• 
$$c[n+1] = c[n] + \frac{1}{2} * \mu * (-\nabla J(n))$$



#### The Hybrid and the Echo Source

- In large distance systems we need four-wire transmission
- A hybrid is used to convert from two-wire to four-wire
- Hybrids ideally translate directly, but impedance mismatching problems
- This leads to coupling of energy from incoming to outgoing branch

# The Hybrid and the Echo Source (ct.)

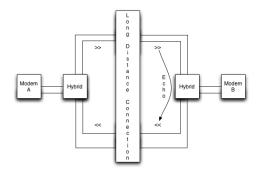



Figure: The Echo Source

#### Motivation of Echo Cancellation

- Full duplex operation
  - Split the passband in two separate channels
  - Upstream
  - Downstream
- Increase data transmission rates
  - Use the whole passband for both, transmission and reception
  - Transmission effects the reception
  - Remove effects through echo cancellation



#### Motivation of Echo Cancellation

- Full duplex operation
  - Split the passband in two separate channels
  - Upstream
  - Downstream
- Increase data transmission rates
  - Use the whole passband for both, transmission and reception
  - Transmission effects the reception
  - Remove effects through echo cancellation



#### Echo Path Model and Canceller Requirements

- Data communication in full duplex mode
- Suiting echo cancellation techniques
- 60 dB of attenuation for properly working DSL tranceiver
- ADSL → different system at telephone subscriber side and central office side
- The following subsection are following corresponding parts in [3]



Echo Cancellation Requirements - The Echo Path Asymmetrical Cancellation

- Frequency division duplex systems
  - Passpand filters in series with the communication channel
  - Filtering out echo noise in spectra other than the signal
- Digital adaptive echo cancellers
  - Parallel to the system echo path.



- Frequency division duplex systems
  - Passpand filters in series with the communication channel
  - Filtering out echo noise in spectra other than the signal
- Digital adaptive echo cancellers
  - Parallel to the system echo path.

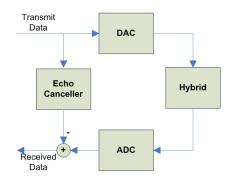



Figure: Echo Canceller

- Goal of echo Cancellation:
  - Reproduce echo
  - Subtract echo from received signal
- Echo path transfer function is not frequency invariant
  - Frequency range up to 10<sup>5</sup> Hz: Echo return loss -6 dB to -24 dB
  - Low echo return loss at low frequencies caused by high impedances of twisted-pair loops
  - Low echo return loss at high frequencies due to leakage inductance in line transformers.



- Goal of echo Cancellation:
  - Reproduce echo
  - Subtract echo from received signal
- Echo path transfer function is not frequency invariant
  - Frequency range up to 10<sup>5</sup> Hz: Echo return loss -6 dB to -24 dB
  - Low echo return loss at low frequencies caused by high impedances of twisted-pair loops
  - Low echo return loss at high frequencies due to leakage inductance in line transformers.



#### The average echo return loss is given by

- $K_{ep} = \frac{1}{f_c} \int_0^{f_c} |H_{ec}(f)|^2 df$
- H<sub>ec</sub>(f) ... echo path transfer function
- $f_c$  ... corner frequency is the bandwidth of interest.
- Examples given in [3] find 18.5 dB for  $f_c = 500 \, kHz$  with the worst echo return at 6 dB as mentioned above.



#### Introducing filters in the model

- $K_{ec} = \frac{1}{f_c} \int_0^{f_c} |G_t(f)H_{ec}(f)G_r(f)|^2 df$
- $G_t(f)$  ... transmit filter frequency response
- $G_r(f)$  ... receiver filter frequency response

- Echo path impulse responses are quite different from system to system
- Common properties:
  - Rapidely changing start
  - Slowly decaying tails
- Due to:
  - Reflections caused by terminal impedance mismatches
  - Bridged taps in inital phase
  - Primary inductance causes slowly changing tail
- Consider round trip times let initial reflections die out.



- Echo path impulse responses are quite different from system to system
- Common properties:
  - Rapidely changing start
  - Slowly decaying tails
- Due to:
  - Reflections caused by terminal impedance mismatches
  - Bridged taps in inital phase
  - Primary inductance causes slowly changing tail
- Consider round trip times let initial reflections die out.



- Echo path impulse responses are quite different from system to system
- Common properties:
  - Rapidely changing start
  - Slowly decaying tails
- Due to:
  - Reflections caused by terminal impedance mismatches
  - Bridged taps in inital phase
  - Primary inductance causes slowly changing tail
- Consider round trip times let initial reflections die out.



- Echo path impulse responses are quite different from system to system
- Common properties:
  - Rapidely changing start
  - Slowly decaying tails
- Due to:
  - Reflections caused by terminal impedance mismatches
  - Bridged taps in inital phase
  - Primary inductance causes slowly changing tail
- Consider round trip times let initial reflections die out.



- RC-networks to model twisted-pair loop impedances
  - Conductance in series to a resistor
  - Resistor in parallel to these two
- $\omega_0$  ... Resonant frequency
- α ... Damping factor
- Shorten the tail by a smaller primary inductance or a digital highpass  $H(z) = 1 z^{-1}$
- Removal of low frequency energy will influence the system performance in a NEXT dominated environment



- RC-networks to model twisted-pair loop impedances
  - Conductance in series to a resistor
  - Resistor in parallel to these two
- $\omega_0$  ... Resonant frequency
- α ... Damping factor
- Shorten the tail by a smaller primary inductance or a digital highpass  $H(z) = 1 z^{-1}$
- Removal of low frequency energy will influence the system performance in a NEXT dominated environment



- RC-networks to model twisted-pair loop impedances
  - Conductance in series to a resistor
  - Resistor in parallel to these two
- $\omega_0$  ... Resonant frequency
- α ... Damping factor
- Shorten the tail by a smaller primary inductance or a digital highpass  $H(z) = 1 z^{-1}$
- Removal of low frequency energy will influence the system performance in a NEXT dominated environment



#### **Echo Canceller Requirements**

- Cancellation level: Echo cancellation quality measure
- Constraints on length of echo canceller possible
- Calculating the cancellation level:
  - $K_{EC} = SNR + K_{ch} K_{ep}$
  - *K<sub>ch</sub>* ... average channel loss
  - Kep ... average echo path loss
  - SNR ... required signal-to-residual noise floor ratio



#### **Echo Canceller Requirements**

- Cancellation level: Echo cancellation quality measure
- Constraints on length of echo canceller possible
- Calculating the cancellation level:
  - $K_{EC} = SNR + K_{ch} K_{ep}$
  - *K<sub>ch</sub>* ... average channel loss
  - $K_{ep}$  ... average echo path loss
  - SNR ... required signal-to-residual noise floor ratio

#### **Echo Canceller Requirements**

#### Example

- $K_{ep} = 17 \, dB$
- $K_{ch} = 23 \, dB$
- $\circ$  SNR = 44 dB
- Kec around 60 dB for to be on the safe side



# Echo Canceller Requirements(ct.)

 Having computed the required echo cancellation, we may now determine the time that has to be spanned

• 
$$K_{EC} = -10log_{10} \frac{\int_{t_s}^{\infty} h_{EC}^2(t)dt}{\int_0^{\infty} h_{EC}^2(t)dt}$$
 [3]

- The number of taps at a given input/output rate with t<sub>s</sub> is determinde via K<sub>EC</sub>
- ie.: 128 taps, 400kHz, t<sub>s</sub> < 320μs</li>



# Echo Canceller Requirements(ct.)

- Having computed the required echo cancellation, we may now determine the time that has to be spanned
- $K_{EC} = -10 log_{10} \frac{\int_{t_s}^{\infty} h_{EC}^2(t) dt}{\int_{0}^{\infty} h_{EC}^2(t) dt}$  [3]
- The number of taps at a given input/output rate with t<sub>s</sub> is determinde via K<sub>EC</sub>
- ie.: 128 taps, 400kHz, t<sub>s</sub> < 320μs</li>

- Echo canceller filter coefficients are estimated and updated using the LMS algorithm
- $H_{k+1} = H_k + \mu A_k (y(k) H_k^T A_k)$ 
  - y(k) ... Received signal
  - H ... Echo canceller filter
  - A ... Input Signal
- They are trained in half duplex mode at startup for faster convergence
  - $\mu_{opt} \leq \frac{1}{mE[a_k^2]}$
  - m ... number of filter coefficients



- Echo canceller filter coefficients are estimated and updated using the LMS algorithm
- $H_{k+1} = H_k + \mu A_k (y(k) H_k^T A_k)$ 
  - y(k) ... Received signal
  - H ... Echo canceller filter
  - A ... Input Signal
- They are trained in half duplex mode at startup for faster convergence
  - $\mu_{opt} \leq \frac{1}{mE[a_k^2]}$
  - m ... number of filter coefficients



- Precision requirement
- Processing in full duplex mode while working with small step sizes still do adaption of filter coefficients
- In a useful setup the noise (its variance) introduced by the filter must not be larger than that one introduced by devices like the ADC
  - Converters introduce nonlinearities

$$\sigma_{A/D}^2 = \frac{1}{3} \frac{1}{2^{2N}}$$

- $\sigma_{filter}^2 = m_{\frac{1}{3}}^{\frac{1}{2^{2M}}}$ 
  - m ... number of coefficients for canceller
  - M ... canceller coefficient resolution
- Bounded by:  $M \ge N + \frac{1}{2}log_2m$



- Precision requirement
- Processing in full duplex mode while working with small step sizes still do adaption of filter coefficients
- In a useful setup the noise (its variance) introduced by the filter must not be larger than that one introduced by devices like the ADC
  - Converters introduce nonlinearities

• 
$$\sigma_{A/D}^2 = \frac{1}{3} \frac{1}{2^{2N}}$$

- $\sigma_{filter}^2 = m_{\frac{1}{3}}^{\frac{1}{2^{2M}}}$ 
  - m ... number of coefficients for canceller
  - M ... canceller coefficient resolution
- Bounded by:  $M \ge N + \frac{1}{2}log_2m$



- Precision requirement
- Processing in full duplex mode while working with small step sizes still do adaption of filter coefficients
- In a useful setup the noise (its variance) introduced by the filter must not be larger than that one introduced by devices like the ADC
  - Converters introduce nonlinearities

• 
$$\sigma_{A/D}^2 = \frac{1}{3} \frac{1}{2^{2N}}$$

- $\sigma_{filter}^2 = m_{\frac{1}{3}}^{\frac{1}{2^{2M}}}$ 
  - m ... number of coefficients for canceller
  - M ... canceller coefficient resolution
- Bounded by:  $M \ge N + \frac{1}{2}log_2m$



### **Asymmetrical Cancellation**

- Different conditions at central office and telephone subscriber side
- Due to asymmetrical throughput conditions, transmit spectra and different sampling rates
- Well known example:
  - ADSL is a typical setup where different sides of the system require different echo cancellers



### **Asymmetrical Cancellation**

- Different conditions at central office and telephone subscriber side
- Due to asymmetrical throughput conditions, transmit spectra and different sampling rates
- Well known example:
  - ADSL is a typical setup where different sides of the system require different echo cancellers

- [2] compares AEC to echo cancellation in Data
   Transmission and is somewhat based on Material that can be found in [1]
- The text below will focus on parts dealing with Data Transmission

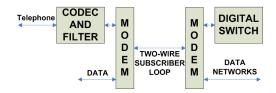



Figure: Application

- Data transmission is mainly done on two wire connections due to high cost of copper wire
- For an overview of alternative technologies [4] talks about different solutions:
  - FTTH
  - Coax or Fiber-Coax-Hybrids
  - Wireless Systems
  - Satellite Services

- Data transmission is mainly done on two wire connections due to high cost of copper wire
- For an overview of alternative technologies [4] talks about different solutions:
  - FTTH
  - Coax or Fiber-Coax-Hybrids
  - Wireless Systems
  - Satellite Services



### Cancellation Algorithms for Data Transmission (ct.)

- Assuming 10 dB of attenuation of feedthrough of the hybrid due to lacking knowledge of two-wire impedance
- 50 dB channel loss and equal signal power on both sides of the line
- Local feedthrough (echo) would be 40 dB higher than the signal to be received
- Aiming for 20 dB SNR we have to attenuate the echo by 60 dB



### Cancellation Algorithms for Data Transmission (ct.)

- Assuming 10 dB of attenuation of feedthrough of the hybrid due to lacking knowledge of two-wire impedance
- 50 dB channel loss and equal signal power on both sides of the line
- Local feedthrough (echo) would be 40 dB higher than the signal to be received
- Aiming for 20 dB SNR we have to attenuate the echo by 60 dB



#### Cancellation Algorithms for Data Transmission (ct.)

- Assuming 10 dB of attenuation of feedthrough of the hybrid due to lacking knowledge of two-wire impedance
- 50 dB channel loss and equal signal power on both sides of the line
- Local feedthrough (echo) would be 40 dB higher than the signal to be received
- Aiming for 20 dB SNR we have to attenuate the echo by 60 dB



### Cancellation Algorithms for Data Transmission (ct.)

- Assuming 10 dB of attenuation of feedthrough of the hybrid due to lacking knowledge of two-wire impedance
- 50 dB channel loss and equal signal power on both sides of the line
- Local feedthrough (echo) would be 40 dB higher than the signal to be received
- Aiming for 20 dB SNR we have to attenuate the echo by 60 dB



- Timing constraints different sampling rates at input and output
- Transmitted signal:  $s(t) = \sum_{m} C_{m}g(t mT)$ 
  - g(t) ... transmitted pulse shape
  - C<sub>m</sub> ... transmitted data symbols
  - T ...time between two symbols
- Passing signal through a filter with echo response H<sub>e</sub>
  - rewrite s(t) to r(t) as the filter respone to s(t)
  - $r(t) = \sum_{m} C_{m} h(t mT)$



- Timing constraints different sampling rates at input and output
- Transmitted signal:  $s(t) = \sum_{m} C_{m}g(t mT)$ 
  - g(t) ... transmitted pulse shape
  - $C_m$  ... transmitted data symbols
  - T ...time between two symbols
- Passing signal through a filter with echo response H<sub>e</sub>
  - rewrite s(t) to r(t) as the filter respone to s(t)
  - $r(t) = \sum_{m} C_{m} h(t mT)$



- Timing constraints different sampling rates at input and output
- Transmitted signal:  $s(t) = \sum_{m} C_{m}g(t mT)$ 
  - g(t) ... transmitted pulse shape
  - $C_m$  ... transmitted data symbols
  - T ...time between two symbols
- Passing signal through a filter with echo response H<sub>e</sub>
  - rewrite s(t) to r(t) as the filter respone to s(t)
  - $r(t) = \sum_{m} C_{m} h(t mT)$



#### Cancellation Algorithms for Data Transmission (ct.)

#### Reconstruction of this signal

- For an integer multiple of T as RT we define
  - $r_l(I) = r((i + \frac{l}{R})T)$
  - i ... the data symbol epoch
  - I from 0 to R-1 represents the sample chosen in this epoch



- Redefine the echo pulse response to generate the replica
  - $h_i(I) = h((i + \frac{I}{R})T) \dots 0 \le I \le R 1$
  - $r_i(I) = \sum_m h_m(I) C_{i-m}$  ... as samples of the received echo
- This FIR filter approximates the echo response
- R independent cancellers that will get the same reference input within an symbol epoch
  - $r_i = \sum_{m=0}^{n-1} C_{i-m} a_m \dots 0 \le i < n-1 \dots$  a as filter coefficients



- Redefine the echo pulse response to generate the replica
  - $h_i(I) = h((i + \frac{I}{R})T) \dots 0 \le I \le R 1$
  - $r_i(I) = \sum_m h_m(I)C_{i-m}$  ... as samples of the received echo
- This FIR filter approximates the echo response
- R independent cancellers that will get the same reference input within an symbol epoch
  - $r_i = \sum_{m=0}^{n-1} C_{i-m} a_m \dots 0 \le i < n-1 \dots$  a as filter coefficients



#### Cancellation Algorithms for Data Transmission (ct.)

#### Example setup

- Receive far-end data plus hybrid-echo
- Decimate this input down to R signals at symbol data rate
- Cancel the echo independently in each channel
- Receive the far-end data after recombination of channels

# **Design Considerations**

- Trade-off: Speed of Adaption vs. Accuracy of Cancellation
- These two goals typically counteract:
  - Asymptotic behavior: 'Inverse of Speed of Adaption'
- Important: fast startup
  - Echo path transfer function will not vary too fast
- Speed of echo cancellers might not be too critical
- le.: It is possible to implement simple stochastic gradient descent algorithms



# **Design Considerations**

- Trade-off: Speed of Adaption vs. Accuracy of Cancellation
- These two goals typically counteract:
  - Asymptotic behavior: 'Inverse of Speed of Adaption'
- Important: fast startup
  - Echo path transfer function will not vary too fast
- Speed of echo cancellers might not be too critical
- le.: It is possible to implement simple stochastic gradient descent algorithms



# **Design Considerations**

- Trade-off: Speed of Adaption vs. Accuracy of Cancellation
- These two goals typically counteract:
  - Asymptotic behavior: 'Inverse of Speed of Adaption'
- Important: fast startup
  - Echo path transfer function will not vary too fast
- Speed of echo cancellers might not be too critical
- le.: It is possible to implement simple stochastic gradient descent algorithms



#### **Notation**

- Filter coefficients:  $a^T = [a_0, a_1, ..., a_{n-1}]$
- Reference input:  $y_i^T = [y_i, y_{i-1}, ..., y_{i-n+1}]$
- Echo path impulse response:  $h^T = [h_0, h_1, ..., h_{n-1}]$
- Received signal: x
- Uncancable error (echo with delay exceeding the number of canceller coefficients:  $v_k = \sum_{m=n}^{\infty} h_m y_{k-m} + x_k$
- Canceller error:

$$e_k = \sum_{m=0}^{\infty} h_m y_{k-m} - \sum_{m=0}^{n-1} a_m y_{k-m} + x_k = (h-a)y_k + v_k$$



#### **Notation**

• Assuming the reference signal  $y_i$  and the near-end talker  $v_i$  to be jointly wide-sense stationary

• 
$$p = E[v_i y_i], \Phi = E[y_i y_i^T], R_j = E[y_i y_{i+j}]$$

• Minimizing  $E[e_i^2]$ 

• 
$$a_{opt} = h + \Phi^{-1}p$$

• 
$$\Phi = R_0 I$$
 ... I is the identity matrix

- p = 0 ... with mutually uncorrelated reference samples, without correlation of reference and received signal:
- $\bullet$   $a_{opt} = h$



#### **Notation**

 Assuming the reference signal y<sub>i</sub> and the near-end talker v<sub>i</sub> to be jointly wide-sense stationary

• 
$$p = E[v_i y_i], \Phi = E[y_i y_i^T], R_i = E[y_i y_{i+j}]$$

Minimizing E[e<sub>i</sub><sup>2</sup>]

• 
$$a_{opt} = h + \Phi^{-1}p$$

• 
$$\Phi = R_0 I$$
 ... I is the identity matrix

- p = 0 ... with mutually uncorrelated reference samples, without correlation of reference and received signal:
- $\bullet$   $a_{opt} = h$



#### **Notation**

• Assuming the reference signal  $y_i$  and the near-end talker  $v_i$  to be jointly wide-sense stationary

• 
$$p = E[v_i y_i], \Phi = E[y_i y_i^T], R_j = E[y_i y_{i+j}]$$

Minimizing E[e<sub>i</sub><sup>2</sup>]

• 
$$a_{opt} = h + \Phi^{-1}p$$

• 
$$\Phi = R_0 I$$
 ... I is the identity matrix

- p = 0 ... with mutually uncorrelated reference samples, without correlation of reference and received signal:
- a<sub>opt</sub> = h



- $a_{opt} = h$
- Coming close to that by choosing the number of coefficients large enough
- The most common algorithm for cancellers are stochastic gradient algorithms (LMS)
- Assuming knowledge about statistics of reference and near-end-talker one can avoid matrix inversion by iterative gradient algorithm

- Expectation is usually not known in practice
  - So we leave it out
- The replacing quantity has the same Expectation
  - But it is a different random variable
  - So the estimation is unbiased but noisy
- Stochastic gradient algorithm:
  - $a_i = a_{i-1} \frac{\beta}{2} \nabla_a [e_i^2]$  ...  $\beta$  is the step size for convergence control
  - $a_i = a_{i-1} + \beta e_i y_i = (I \beta y_i y_i^T) a_i + \beta (y_i y_i^T h + v_i y_i)$



- Expectation is usually not known in practice
  - So we leave it out
- The replacing quantity has the same Expectation
  - But it is a different random variable
  - So the estimation is unbiased but noisy
- Stochastic gradient algorithm:
  - $a_i = a_{i-1} \frac{\beta}{2} \nabla_a [e_i^2]$  ...  $\beta$  is the step size for convergence control
  - $a_i = a_{i-1} + \beta e_i y_i = (I \beta y_i y_i^T) a_i + \beta (y_i y_i^T h + v_i y_i)$



- Expectation is usually not known in practice
  - So we leave it out
- The replacing quantity has the same Expectation
  - But it is a different random variable
  - So the estimation is unbiased but noisy
- Stochastic gradient algorithm:
  - $a_i = a_{i-1} \frac{\beta}{2} \nabla_a [e_i^2]$  ...  $\beta$  is the step size for convergence control
  - $a_i = a_{i-1} + \beta e_i y_i = (I \beta y_i y_i^T) a_i + \beta (y_i y_i^T h + v_i y_i)$



- Via coefficient vector trajectories one can define the evolution of the error over iterations
- Evaluating this approach one will find that there are several constraints for the matrix
  - $\Phi = R_0 I$  with  $R_i = E[y_i y_{i+j}]$ :
  - symmetric
  - Toeplitz(Toeplitz matrix is a matrix which has constant values along negative-sloping diagonals)
  - positiv definite( $\Re[x^*Ax] > 0$ )
- The eigenvalue spread of  $\Phi$  can be related to th power spectral density  $minS(\omega) < \lambda_i < maxS(\omega)$



- Via coefficient vector trajectories one can define the evolution of the error over iterations
- Evaluating this approach one will find that there are several constraints for the matrix
  - $\Phi = R_0 I$  with  $R_i = E[y_i y_{i+j}]$ :
  - symmetric
  - Toeplitz(Toeplitz matrix is a matrix which has constant values along negative-sloping diagonals)
  - positiv definite( $\Re[x^*Ax] > 0$ )
- The eigenvalue spread of Φ can be related to th power spectral density minS(ω) < λ<sub>i</sub> < maxS(ω)</li>



- $\lambda_{max} \rightarrow maxS(\omega)$
- $\lambda_{min} \rightarrow minS(\omega)$ 
  - A large ratio between maximum and minimum spectrum of the reference signal leads to slow convergence of average coefficient vector trajectories
  - A small ratio lets the trajectories converge fast
  - For the theory of fluctuation of trajectories about the average [1] gives a detailed analysis
- There is a mixing condition that needs to be fullfilled so that convergence can be guaranteed
  - This condition is that the reference signal has a non-zero power spectrum up to half the sampling rate



- $\lambda_{max} \rightarrow maxS(\omega)$
- $\lambda_{min} \rightarrow minS(\omega)$ 
  - A large ratio between maximum and minimum spectrum of the reference signal leads to slow convergence of average coefficient vector trajectories
  - A small ratio lets the trajectories converge fast
  - For the theory of fluctuation of trajectories about the average [1] gives a detailed analysis
- There is a mixing condition that needs to be fullfilled so that convergence can be guaranteed
  - This condition is that the reference signal has a non-zero power spectrum up to half the sampling rate



- $\lambda_{max} \rightarrow maxS(\omega)$
- $\lambda_{min} \rightarrow minS(\omega)$ 
  - A large ratio between maximum and minimum spectrum of the reference signal leads to slow convergence of average coefficient vector trajectories
  - A small ratio lets the trajectories converge fast
  - For the theory of fluctuation of trajectories about the average [1] gives a detailed analysis
- There is a mixing condition that needs to be fullfilled so that convergence can be guaranteed
  - This condition is that the reference signal has a non-zero power spectrum up to half the sampling rate



- Choosing a proper step size
- Derived in the paper [2]

• 
$$0 < \beta < \frac{2}{\lambda_{max}}$$

- Fastest convergence:  $\beta = \frac{1}{nR_0}$
- For keeping the excess mean-square error small  $\beta$  should be much smaller than the bound in the first equation
- Regarding the second equation time-variance has to be taken into account  $\rightarrow \beta$  has to keep track



- Choosing a proper step size
- Derived in the paper [2]

• 
$$0 < \beta < \frac{2}{\lambda_{max}}$$

• Fastest convergence: 
$$\beta = \frac{1}{nR_0}$$

- For keeping the excess mean-square error small  $\beta$  should be much smaller than the bound in the first equation
- Regarding the second equation time-variance has to be taken into account  $\rightarrow \beta$  has to keep track



- Choosing a proper step size
- Derived in the paper [2]

• 
$$0 < \beta < \frac{2}{\lambda_{max}}$$

• Fastest convergence: 
$$\beta = \frac{1}{nR_0}$$

- For keeping the excess mean-square error small  $\beta$  should be much smaller than the bound in the first equation
- Regarding the second equation time-variance has to be taken into account  $\rightarrow \beta$  has to keep track



## **Further Adjustments**

#### Nonlinear Echo Cancellation

- The algorithm presented deals with echo path impulse reponses as linear combination of the reference signal
- Converters are the main sources for nonlinear noise
  - Small variance, but has to be taken into account
  - 60 dB of cancellation is targetet



## **Further Adjustments**

#### Nonlinear Echo Cancellation

- The algorithm presented deals with echo path impulse reponses as linear combination of the reference signal
- Converters are the main sources for nonlinear noise
  - Small variance, but has to be taken into account
  - 60 dB of cancellation is targetet



### Further Adjustments

#### Nonlinear Echo Cancellation

- Detailed analysis in [1]
  - Volterra series can be shown to be capable of providing perfect cancellation
  - Finite number of filter coefficients
  - Assumes that the echo can be represented as a function of a finite number of past transmitted data symbols [2]



## **Further Adjustments**

### Adaption Speedup

- Fast initial convergence through large β
- Using lattice filter structures
  - No guarantee to find good solutions for every case
  - Whitenes the reference signal ⇒ introduces some dependency on the input that can be hard to deal wit



### **Further Adjustments**

### **Adaption Speedup**

- Fast initial convergence through large β
- Using lattice filter structures
  - No guarantee to find good solutions for every case
  - Whitenes the reference signal ⇒ introduces some dependency on the input that can be hard to deal with



### Further Adjustments

### Adaption Speedup

- Kalman filters
  - Fast initial convergence
  - Able to deal with uniformly distributed noise from the converters
  - Might be hard to meet all requirements for kalman filtering theory



### Conclusion

- Several aspects to be considered
- Some theoretical background for parts of the problem in literature
- Main focus on Cancellation in Speech Transmission

- [1] O. Agazzi, D. G. Messerschmitt, D. A. Hodges Nonlinear Echo Cancellation of Data Signals IEEE Transactions on Communications, Vol. COM-30, 11; November 1982.
- [2] D. G. Messerschmitt

  Echo Cancellation in Speech and Data Transmisison

  IEEE Journal on Selected Areas in Communications, Vol. SAC-2, 2; March 1984.
- [3] W. Y. Chen DSL Simulation Techniques and Standards Development for Digital Subscriber Line Systems Maximilian Technical Publishing 1998. ISBN 1-57870-017-5.

- [4] T. Starr, J. Cioffi, P. Silverman

  Understanding Digital Subsciber Line Technology
  Prentice Hall 1999. ISBN 0-13-780545-4.
- [5] P. Warrier, B. Kumar xDSL Architecture McGraw-Hill 2000. ISBN 0-07-135006-3.
- [6] P. Singerl
  Investigation of echo-cancellation methods in time domain
  for broadband communication systems
  Diploma Theses at Graz University of Technology, March
  2000.

Thank you for your attention!

Feel free to ask quesitons!