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Abstract— Equalizer design for multi-path channels is closely
linked to the distribution of zeros of mobile channels. While in
a deterministic scenario, equalizers can be designed based on
knowledge of the exact locations of zeros in the complex plane,
mobile channels like in GSM/EDGE systems ask for a different
approach. Various channel distortions make the derivation of
a deterministic model a hard if not infeasible task. However,
one can show that a statistical channel description can help in
the development of suitable equalizers. We summarize some of
the results obtained in [Schober01] on the importance of the
distribution of zeros of the channel and finally explain some
equalization respectively prefiltering strategies to overcome the
burden of inter-symbol interference. Based on given power delay
profiles, one can choose proper equalizer concepts for improving
overall transmission performance.

I. INTRODUCTION

WHILE this paper’s title says ’Tutorial on Channel
Equalization for Mobile Channels’, it mainly sum-

marizes the work presented in [Schober01], titled ’On the
Distribution of Zeros of Mobile Channels with Application
to GSM/EDGE’. We start with a brief introduction to multi-
path channels (MPCs) in Section II, showing the richness of
distortions that occurs within mobile transmission channels.
In Section III we discuss the general problem of channel
equalization and in particular explain some solution-strategies:
Linear Equalization (LE), Decision-Feedback Equalization
(DFE), Maximum Likelihood Sequence Estimation (MLSE),
Reduced-State Sequence Estimation (RSSE) and Delayed De-
cision Feedback Sequence Estimation (DDFSE). Further in
Section IV an introduction is given on impulse response
truncation and allpass prefiltering as a means of improving the
equalizer performance. After that, we give a statistical model
of multi-path channels in Section V, leading to a description
of the distribution of zeros in MPCs. Finally, we describe
power delay profiles (PDPs) and give application examples
in Section VI.

II. MPCS - INTUITIVE CHARACTERIZATION

Although not appropriate, we start with the introduction
of multi-path channels as systems causing delays at symbol-
intervals, leading to a first idea on the channel’s properties.
Mobile transmission channels (model see Figure 1) can be
seen as the combination of several propagation paths, each
featuring an individual delay. With only a line-of sight (LOS)
component, the channel’s impulse response hC(t) features
only one bin. With every additional delayed path added,
it features more and more bins. This leads to inter-symbol

interference (ISI), or, from a different point of view, to a
certain distribution of zeros in the complex plane.
To reduce the ISI / place poles at the location of zeros, one
can design equalizers acting at the receiver side, hR(t). The
expected result is an overall impulse response featuring only
one significant bin. There exist various approaches of which
some are described below.

Fig. 1: Overall mobile channel model. During transmission
from transmitter Tx to receiver Rx, the signal is distorted
by the overall impulse response h(t). It is composed out of
the impulse responses of the transmitter (hT (t)), the channel
(hC(t)) and the receiver (hR(t)).

III. CHANNEL EQUALIZATION

The goal of channel equalization is to remove the effects
of the channel on the transmitted symbol sequence [ak],
i.e. inter-symbol interference (ISI). This can be done either
by inverse filtering (e.g. Linear- (LE) or Decision-Feedback-
Equalization (DFE)) or by applying sequential detection (e.g.
Viterbi algorithm).
An equalizer-filter can be optimized according to three differ-
ent cost functions:

• Zero forcing criterion: invert the channel impulse re-
sponse

• MMSE criterion: minimize the mean-squared-error
• Min. Bit-Error-Rate (BER) criterion

In the following discussions on different equalizers only the
first two criteria are used.

The channel dynamics may not be known at startup. Further
the channel may vary with time, so an adaptive implementation
of the equalizer is necessary.The following different modes of
adaptation can be distinguished:

• Adaptation using a training signal (cp. periodic training
sequence in GSM)

• Decision directed adaptation: An error signal is generated
by comparing in- and output of the decision device
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• Blind adaptation: Exploiting signal properties instead of
using an error signal for adaptation

For the discussions on LE and DFE the second strategy is
assumed.

A. Linear Equalization

In Figure 2a the basic structure of a linear equalizer is
shown. The received sequence rk is obtained by filtering of the
symbol sequence ak by the linear channel H(z) and adding
noise nk. Then the linear equalization filter C(z) is applied
to the input. The error signal ek is defined as the difference
between the output of the equalizer and the output of the
decision device (slicer). The slicer simply quantizes the input
to the nearest alphabet symbol.

Fig. 2: Basic block diagram of a Linear Equalizer (from [BA])

Further in 2b an equivalent structure, emphasizing the
contributions to the error signal, namely the rest-ISI and the
filtered noise, is depicted.
Obviously the power spectrum of the error Se can be written
as

Se = Sa |H(z) · C(z)− 1|2 + Sn |C(z)|2 (1)

where Sa is the power spectrum of the data-symbols (as-
suming a modelation as a WSS random process), and Sn is
the power spectrum of the noise process.
If we assume equalization according to the linear forcing
criterion (i.e. C(z) = H(z)−1) we see that the ISI-contribution
to the error vanishes and an enhanced noise part remains.
If H(z) is a non-minimum phase channel the equalizer has
poles outside the unit circle and is thus not realizable. Further
the problem of noise enhancement exacerbates when the zeros
of the channel approach the unit circle.
If we consider also the impact of the additive noise on the
error we end up in the idea to minimize the mean-squared
error. In Eq. (2) the power spectrum of the received signal Sr

is given and based on that and Eq. (1), Eq. (3) is obtained [BA].
The reflected channel transfer function H∗(1/z∗) is called a
matched filter.

Sr = Sa |H(z)|2 + Sn (2)

Se = Sr

∣∣C(z)− SaS−1
r H∗(1/z∗)

∣∣2 + SaSnS−1
r (3)

Clearly this term can be minimized by choosing

C(z) = SaS−1
r H∗(1/z∗) (4)

An important difference to the Zero-forcing solution is that
we have this matched filter term now which would not have
been possible in the other case since the equalizer would
have simply found the inverse of it. Note that if the channel
has poles we get an anticausal IIR matched filter. From Eq.
(4) we can conclude that the MMSE solution approaches the
Zero-forcing solution for Sn → 0.
The DFE results in less error-power at the slicer input since
it avoids the noise enhancement by poles close to the unit
circle.
A more detailed introduction to linear equalizers is given
in [BA] and [MO].

B. Decision Feedback Equalization (DFE)

The DFE makes use of the regenerative effect of the
non-linear decision device. In Figure 3 we see another
interpretation of why the DFE is an improvement over the
LE. Regarding Figure 3a we recognize an additional linear
prediction block E(z) filtering the correlated error ek and
producing an error e′k which has, due to the properties of a
linear predictor [BA], always a lower variance compared to
ek. In other words the linear predictor removes all predictable
information resulting in white output noise.

Fig. 3: Enhancement of the LE by linear prediction of the error
(from [BA])

Figure 3b shows an equivalent structure. You see that
the precursor equalizer consists of the Zero-forcing linear
equalizer from above and the linear predictor given by Eq.
(5) [BA] where Mn(z) is the minimum phase component of
the power spectrum of the noise denoted as Sn(z) obtained
by minimum-phase spectral factorization given in Eq. (6).
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E(z) =
Hmin(z) ·H∗

max(z)
Mn(z)

(5)

Sn(z) = γ2
n ·Mn(z) ·M∗

n(1/z∗) (6)

where γ2
n is the geometric mean of Sn(ejΘ)

C(z) · E(z) =
1

H0(z)
· H∗

max(1/z∗)
Hmax(z)

·M−1
n (z) (7)

where H0 contains all poles/zeros of H(z) at z = 0

The overall precursor-equalizer is denoted in Eq. (7).
It contains an Allpass part H∗

max(1/z∗)
Hmax

which mirrors the
maximum phase part of H(z) into the unit circle. Thus the
output of the precursor-equalizer is minimum phase with
respect to the cursor. The post-cursor can then be equalized
by the postcursor-equalizer E(z)− 1.
Note that the decision of the DFE solely relies on the cursor
and completely ignores the signal energy embedded in the
ISI-terms. The maximum-likelihood sequence detector (cp.
Section III-C) on the other hand uses all the energy in the
equivalent channel impulse response.

Now we want to use the MMSE-criterion to derive a
solution for the optimal equalizer. The slicer-error before linear
prediction is the same as in the Zero-forcing case, so the
optimal transfer function C(z) doesn’t change compared to
the linear equalizer. The combination of Eq. (3) and (4) shows
that the power spectrum of the residual error is

Se =
SaSn

Sr
=

γaγn

γr
· Ma(z)Mn(z) ·M∗

a (1/z∗)M∗
n(1/z∗)

Mr(z) ·M∗
r (1/z∗)

(8)
= γe ·Me(z) ·M∗

e (1/z∗)

We are looking for the filter E(z) that whitens the slicer
error. On the other hand we know from theory that the
prediction filter is a minimum-phase filter [BA]. Therefore Eq.
(9) and (10) follow [BA].

E(z) =
1

Me(z)
=

Mr(z)
Ma(z) ·Mn(z)

(9)

C(z) · E(z) =
γ2

a

γ2
r

·H∗(1/z∗) · M∗
a (1/z∗)

M∗
r (1/z∗)

·M−1
r (z) (10)

As in the LE-MMSE case there is a matched filter part
and a noise whitening part M−1

n which were absent in the
solution for the DFE-Zero-forcing.
Generally speaking, DFEs offer ISI cancellation with reduced
noise enhancement and may thus provide a significantly lower
BER compared to linear equalizers.

C. Maximum Likelihood Sequence Estimation (MLSE)

Maximum likelihood sequence estimation is the
optimal minimum probability of error detector on
ISI channels [BA]. The strategy is to look for the
most likely sequence out of all possible sequences

X[z] =
{
x0 + x1z

−1 + x2z
−2 + · · ·+ xN−1z

N−1|xk ∈ X
}

using the minimum distance rule from Eq. (11) where y(z)
is the observation sequence and H(z) is the channel transfer
function.

x̂(z) = argminx(z)∈X[z]

∥∥∥∥∥∥y(z)− (H(z)− 1)x(z)︸ ︷︷ ︸
ISI

−x(z)

∥∥∥∥∥∥
2

(11)

Please note that the number of states, i.e. the number
of different symbol sequences, is growing exponentially
depending on the alphabet size |X| and the length of the
channel impulse response K with |X|K .
A popular algorithm implementing the MLSE is the Viterbi
algorithm which searches a state sequence through the trellis
that minimizes the distance to the observation sequence.

D. Reduced State Sequence Estimation (RSSE)

Coming from the MLSE the idea that gives rise to RSSE
[[RSSE88]] ( and as a special case of RSSE to DDFSE
[[DDFSE00]]) is to narrow down the number of states M by
combining states to sub-states. For a certain delay k (1 < k ≤
K) a 2-dim. set partitioning Ω(k) is defined where the signal
set is partitioned into Jk subsets (1 < Jk < M ). For this set
partitioning two conditions are defined:

• J1 ≥ J2 ≥ . . . ≥ JK

• Ω(k) is a further partition of the subsets of Ω(k + 1)
Equation (III-D) means that when we look further into the

past we never see an increase in sub-states.
An example of a set partitioning is presented in Figure 4 where
you can see that Eq. (III-D) is fulfilled since in the next deeper
level of the tree the states from the previous level are each
divided into two sub-states.

Fig. 4: Ungerboeck partition tree for the rectangular 16-QAM
signal set

But also in the other direction, i.e. from regular state to
substate, a connection has to be defined: ai(k) is the index
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(1 ≤ ai ≤ Jk) of the sub-state a certain state belongs to.
Finally by this merging into sub-states we reduced the number
of states to

∏K
k=1 Jk. Note that from one state to the next there

are always J1 transitions, i.e. parallel transitions occur when
J1 < M .

It is clear that now paths merge earlier than in the original
trellis diagram. Therefore it is important that you can reliably
distinguish between states at the point of merging into one
sub-state. Looking at Figure 4 it becomes reasonable that for
that reason, for every Ωk you have to maximize the minimum
intra-subset Euclidean distance, i.e. the distance between two
states of the same sub-state.
Everytime you merge two states you have to decide which
one of them was more likely and store this symbol in a path
history associated with a certain state tk.
An important fact to notice is that in contrast to the MLSE
the performance of the RSSE is affected by the phase response
since the more you look into the past, the less different states
are possible because you already merged (i.e. decided for)
some of them. In other words the algorithm doesn’t make
the decision about the most likely symbol immediately, but
gradually dismisses certain possibilities. Therefore the earlier
samples of the impulse response have a higher impact on the
decision than later ones. This explains why the RSSE performs
better for minimum phase responses, where the energy in the
first K ′ samples is maximized for every K ′ [[RSSE88]].
Based on how fast you merge you can construct other equal-
izers like the DFE (Jk = 1,∀k) or the DDFSE (Jk ={

M 1 ≤ k ≤ K ′

1 K ′ ≤ k ≤ K
) which are thus just special cases of the

RSSE.

E. Delayed Decision Feedback Sequence Estimation (DDFSE)

The DDFSE can be regarded as a hybrid between MLSE
and Zero-Forcing DFE or, as described in Section III-D,
as a special case of RSSE. It’s like a Viterbi algorithm
working on a truncated (at a length K’) channel impulse
response and using a Zero-forcing DFE on each branch of
the trellis subtracting the postcursor ISI caused by samples
xk−K′−1, xk−K′−2, ..., xk−K .
Equation (12) finally shows the calculation of the branch
metric, where yk is the observation at time k, xk is the
symbol at time k, x̂k is the symbol estimate at time k and
h is the channel impulse response. The result is shown in
Equation (13).

branch metric calculation:

L =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
yk −

K′∑
i=1

hixk−i︸ ︷︷ ︸
state contribution

−
K∑

i=K′

hix̂k−i︸ ︷︷ ︸
delayed decision contribution︸ ︷︷ ︸

ISI

−xk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

(12)

L =

∣∣∣∣∣∣yk −
K′∑
i=0

hixk−i − ŵk−K′−1

∣∣∣∣∣∣
2

(13)

where ŵ is the postcursor ISI using decisions made

IV. PREFILTERING

A. Impulse Response Truncation

We know that for channels with large delay spread, i.e. long
impulse responses h, or transmissions using large alphabets,
a very high complexity may result for the MLSE. The aim of
impulse response truncation is to minimize the power of all
impulse response samples he(k) for k > Ng by applying a
prefilter with impulse response c at the input to the equalizer
and thus restricting the complexity of the equalizer drastically
(cp. Figure 5).

Fig. 5: Goal of Impulse Response Truncation (from
[[Schmidt00]])

In Section II we have heard that the extent to which we
can shorten the impulse response depends on the number of
zeros of the channel transfer function close to the unit circle.
Otherwise we get lower equalizer performance [Schober01].
The reason why in the following we concentrate on FIR-
prefilters is that the performance of the IIR-prefiltered system
deteriorates in case of noise and non-ideal channel knowledge
[[Schmidt00]].
In the following we also assume ideal knowledge of the
channel impulse response.
Convolution of the channel- with the prefilter impulse response
yields Eq. (14), where K and P are the lengths of the impulse
responses of h resp. c and H is the convolution matrix of h. Eq.
(15) formulates our demands: the convolved impulse response
is truncated to a length Ng , the rest of the impulse response
can take arbitrary values and the first sample shall be 1 (to
avoid a zero solution). Excluding all lines of the convolution
matrix we don’t have any restrictions on, results in the reduced
convolution matrix Hr and our problem formulation can be
written as denoted in Eq. (16).
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he(k) = h ∗ c = [he(0), he(1), . . . , he(K + P − 1)]T

= H · c (14)

he(k) =


1 k = 0
∗ 0 < k ≤ Ng

0 k > Ng

(15)

Hr · c = d + δ (16)

where d = [1, 0, 0, . . . , 0]T

error vector δ = [δ(0), δ(1), . . . , δ(K + P −Ng)]
T

The optimal solution, as given in Eq. (17), of this problem
in a MMSE sense leads to the pseudo-inverse of Hr (since
you can only invert square matrices), and changes to Eq. (18)
if you assume additive white Gaussian noise [[Schmidt00]].
The term γ2

pe equals 1
Signal−To−Noise Ratio .

c = (HT
r Hr)−1HT

r · d (17)

c = (HT
r Hr + γ2

pe)
−1HT

r · d (18)

Finally we’d like to repeat that for practical systems
the impulse truncation technique must be combined with
time-domain channel estimation in order to get an estimate
for h.

B. Allpass Prefilter Computation

In Section II we have seen that suboptimum sequence
estimators clearly rely on a discrete-time minimum phase
impulse response. This section is denoted to a way of finding
a closed form solution, necessary if the training sequence
is too short, for an Allpass prefilter that transforms our
transfer function of the channel H into it’s minimum phase
part. A more precise description of the following is given in
[[Gerstacker02]].

Equation (19) defines our optimal prefilter for the task
mentioned. So the most direct approach would be to
calculate Hmin(z) (e.g. by spectral factorization, root finding,
prediction-error filter etc. ).

A(z) =
Hmin(z)

H(z)
(19)

A problem quite obvious is that A(z) is non-stable since
we assumed H(z) has maximum phase components. Possible
solutions to that problem are [[Gerstacker02]]:

• Viewing A(z) as a transfer function corresponding to a
noncausal and stable impulse response and using a FIR-
filter approximation

• Time reverse a block of received data, filter the block
with A(1/z) and time-reverse the output sequence again

• Filter the data with Ã(z) = Hmax(z)
H(z) , and since the

resulting impulse response is maximum-phase then you

simply apply reduced-state equalization in negative time
direction then (”backward decoding”)

Another possibility instead of computing Hmin directly is
to apply the FIR feedforward filter of a MMSE-DFE though
this solution doesn’t seem to be robust to a mismatch of design
parameters in certain cases [[Gerstacker02]].

In [[Gerstacker02]] a computationally less expensive ap-
proach based on linear prediction is presented.
First we see in Eq. (20) that our previous demand can be
rewritten. The ”new” allpass prefilter consists of a matched
filter and a second part 1

H∗
min(1/z∗) (cp. Eq. (21)). We will

approximate this second part by a FIR filter F2(z) ≈ C ·
1

H∗
min(1/z∗) = G∗(1/z∗).

Hmin(z) ·H∗
min(1/z∗) = H(z) ·H∗(1/z∗)
Hmin(z)

H(z)
=

H∗(1/z∗)
H∗

min(1/z∗)
(20)

A(z) = A1(z) ·A2(z)

= H∗(1/z∗) · 1
H∗

min(1/z∗)
(21)

The striking idea now is that we say this filter G(z) is a
prediction error filter as denoted in Eq. (22) where P (z) is a
prediction filter.

G(z) = 1− P (z) (22)
... prediction-error filter of order qp

The optimum coefficients for minimization of the output
power of the error filter are given by the solution of the
Yule-Walker equations [[Gerstacker02]], where Φhh is the
autocorrelation matrix of h, ϕhh is the autocorrelation vector
and p is the coefficient vector of the prediction filter:

Φhhp = ϕhh (23)

These equations can be solved recursively via the Levinson
Derbin algorithm. Further in [[Gerstacker02]] it is shown that
for infinite order (qp →∞) G(z) = 1− P (z) = C∗

Hmin(z) .
So finally the allpass prefilter looks like the following:

A(z) = z−(qh+qp) ·H∗(1/z∗) · (1− P ∗(1/z∗)
(24)

where qh is the length of the channel impulse response

V. MPCS - STATISTICAL MODEL

As opposed to Section II, we give a more realistic
description of multi-path channels in this section,
incorporating information on Equalizers out of Section III as
well.
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A. Channel Physics

There exist following propagation phenomena:
• Reflection, which occurs on smooth surfaces
• Transmission through buildings, walls, etc.
• Diffraction at solid edges
• Scattering on rough surfaces
These phenomena cause waves with different phase shifts

to arrive at the receiver, resulting in destructive interference.
It is also termed small-scale fading, which varies in the range
of up to 10 · λ as the receiver moves (see Figure 6). In the
following, only small-scale fading is considered, as opposed
to large-scale fading, e.g. shadowing by hills.

Fig. 6: Phasor (left) and amplitude (right) of received field
E. In the amplitude plots, one can clearly observe fading,
characterized by low amplitudes [MO].

B. Channel Impulse Response

Due to the varying configuration of transmitter, receiver and
interacting objects between them, {h(t)} varies with time. In
fact, we have a time-variant impulse response {hτ (t)}. When
considering its sampled version, {hm[n]}, we have to keep in
mind that infinitely many multi-path components contribute
to its individual bins. This means further on that we can
view {hm[n]} as a random process. With assuming the multi-
path components of {hτ (t)} to be identically, independently
distributed in absence of a dominant component, we get a
circular symmetric zero-mean Gaussian distribution of the bins
hm[n] via the central limit theorem. For that, the absolute
values of {hm[n]} are Rayleigh-distributed.
With the presence of a dominant component, we get a Rice
distribution as shown in Figure 7.

As shown in Section III, equalizer performance heavily
depends on how close zeros lie next to the unit circle |z| = 1
in the complex plane. For that, we are interested in statistical
measures describing the radial distribution of zeros. At first,
we have the marginal density given as [PA] (25), then the
expected number of zeros inside the disc |z| = r ≤ R (26),
and the expected number of zeros inside ρ ≤ |z| ≤ 1/ρ, 0 <
ρ < 1 (27). Of special interest for equalizer design is the
number of zeros ”close” to the unit circle, given by the disc
for ρ = 0.9 (0.9 ≤ |z| ≤ 1.11).

fr(r) , r ·
2π∫
0

fz(r · cos(ϕ) + j · r · sin(ϕ)) · dϕ (25)

Fig. 7: Rice distribution. For the Rice factor Kr → 0 (no
dominant component), it approaches a Rayleigh distribution.
The higher the impact of the dominant component (Kr ↑), the
more it approaches a biased Gaussian distribution [MO].

n(R) =

R∫
0

fr(r) · dr (26)

d(ρ) = n(1/ρ)− n(ρ) (27)

Assuming uncorrelated impulse response coefficients, one
can provide a closed-form solution for fr(r) as specified in
Equation 28. Important to note here is the dependence on
the variances of impulse response bins, σ2

h and radius r. The
corresponding n(r) is given in Equation 29. For an exponential
decay of channel impulse response bin variances as shown
in Figure 8, the distribution of zeros looks like depicted in
Figure 9.

fr(r) =
2

r

0BBBBB@
L−1P
n=0

n2σ2
h[L − 1 − n]r2n

L−1P
n=0

σ2
h
[L − 1 − n]r2n

−

0BBBB@
L−1P
n=0

n2σ2
h[L − 1 − n]r2n

L−1P
n=0

σ2
h
[L − 1 − n]r2n

1CCCCA
21CCCCCA (28)

n(R) =

L−1∑
n=0

n · σ2
h[L− 1− n] ·R2·n

L−1∑
n=0

σ2
h[L− 1− n] ·R2·n

(29)

Fig. 8: Baseband channel impulse response variances with
exponential decay.
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Fig. 9: Normalized density of zeros for impulse response
length L = 5 (left), marginal density of zeros for exponential
decay of channel impulse response variances and different
impulse response lengths L [Schober01].

VI. POWER DELAY PROFILES

In Section V we showed the distribution of zeros for
theoretical impulse responses. Here, we give some practical
examples, considering adequate equalizer design. The Euro-
pean Telecommunications Standards Institute (ETSI) recom-
mends standardized measures to characterize channel impulse
responses, called ”Delay Power Spectral Densities” or ”Power
Delay Profiles” (PDPs). These PDPs are based on measure-
ments and represent a simplified form of the channel’s auto-
correlation function. Although the ACF would be an extensive
description of the linear, time-varying impulse responses, it is
too cumbersome. Additionally, the PDPs suffice for describing
the channel.
There are four PDPs recommended by the ETSI, as shown in
Figure 10. For the RA, TU and HT profiles, two alternatives
are given. Furthermore, there are six-tap equivalents for the
twelve-tap PDPs shown here.

Fig. 10: Recommended PDPs for Rural Area (RA), Typical
Urban (TU), Hilly Terrain (HT) and Equalizer Test (EQ).
Optional alternative PDPs are plotted using dashed lines.

Below we will show the distributions of zeros for these
four PDPs and mention equalizer design considerations for
each of them.

In the RA PDP, we have an essentially flat channel (∼”one
tap only”). For that, the zeros of h(t) are mainly influenced
by the transmit- and receiver input filters. According
to [Schober01], hT (t) is chosen to be an Gaussian-minimum
phase shift keying (GMSK) pulse, as standardized for
EDGE. The shape of hR(t) is the receiver designer’s choice.
In [Schober01], a squared-root raised cosine (SRC) filter with
α = 0.3 was chosen.

For HT, the distribution of zeros is shown in Figure VI. As
can be observed, it is not rotational symmetric. That comes
from the impulse response coefficients being correlated. Most
of the zeros lie inside |z| < 1 - some in the area |z| ≥ 2,
however ⇒ DFE resp. DDFSE/RSSE performance increasable
using an allpass prefilter that transforms the zeros inside the
unit circle. Only one zero lies inside 0.9 ≤ |z| ≤ 1.11 ⇒
truncation of h[n] to L = 3 possible.

Fig. 11: HT: fz(z) and fr(r) for L = 7 [Schober01]

With the TU profile, we have a distribution of zeros that
is not rotational symmetric as well - see Figure VI. As there
are approximately only 0.07 zeros inside 0.9 ≤ |z| ≤ 1.11
⇒ truncation to L = 2 possible. We have 1.1 zeros lying
outside |z| = 1 ⇒ prefiltering with an allpass prefilter to
get a minimum phase system response will improve equalizer
performance like in the HT profile.

In the EQ profile’s distribution of zeros one can observe
a peak at z = 1, see Figure VI. This indicates a strong
correlation between neighboring bins of the channel impulse
response. Like the distributions mentioned above, fz(z) is not
circularly symmetric. Due to the correlated bins, there are
many zeros near the unit circle with the number of zeros
inside the unit circle being equal to the number of zeros
outside the unit circle on average. Prefiltering can improve
equalizer performance here as well. With 1.2 zeros inside
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Fig. 12: TU: fz(z) and fr(r) for L = 3 [Schober01]

0.9 ≤ |z| ≤ 1.11, a truncation of h[n] to L = 3 is possible
without lowering equalizer performance.

Fig. 13: EQ: fz(z) and fr(r) for L = 6 [Schober01]

VII. CONCLUSION

Given the knowledge of the distribution of zeros in a mobile
channel, one can design suitable equalizers to improve the
overall transmission performance in terms of inter-symbol in-
terference / number of zeros in the complex plane. Considering
the application of the statistical equalizer design concepts
presented above, it is inevitable to have a statistical model
of the channel, however, which is left open at this point.
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