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1 Introduction 
 
The topic of this report is Series Expansion with Wavelets. Wavelets are a family of basis 
functions for signals, either continuous or discrete in time. One of the most important 
properties of wavelets is the finite localization in time and frequency, as contrary to time 
representation (no localization in frequency) and frequency representations (no localization in 
time).  
At the beginning the basics of signal representation will be covered, some examples will be 
given and their properties concerning time and frequency resolution will be discussed. Based 
on this discussion, some desired properties of basis functions for signals will be derived. The 
basic idea of wavelets will then be discussed by using the Haar – Wavelet (the first and 
probably also the simplest Wavelet) as an example. This will be done, by proofing, that the 
Haar – Wavelet is actually a basis for the space of functions which are squared summable (L2 
– space). In this step, the basic idea of wavelets, namely coarsely approximating the signal 
and then adding details are presented. This is called the Multiresolution concept, which 
properties will be highlighted, because of its importance to the Wavelet analysis.  
The Haar – Wavelet itself is one boundary case for the Wavelet analysis, where as the other 
boundary is the Sinc – Wavelet. The Sinc - Wavelet is also shortly introduced and its basic 
construction steps are shown. 
 

2 Signal representation 
Signals are points in a vector space, which has infinite dimensions. As known, one needs 
basis functions which span the vector space to project the signal on. The choice of this basis 
functions and their properties will be the main topic of this report. To recap, a signal f(t) is 
given by  

 
 
 
 
 
 
 

φk are the basis functions on which the signal is projected. Now a few possibilities of basis 
functions and their properties will be discussed. Especially the influence of the basis functions 
on the localization in time and frequency. To clarify, we are talking about how well a 
coefficient of the signal representation is localized in both time and frequency or, in other 
words, what it tells us about the frequency and time properties of the signal. 

2.1 Time domain representation 
The time domain representation is the representation one obtains when measuring a signal. In 
this representation the basis functions are infinite short impulses: 
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As can be easily seen, the basis functions are precisely localized in time, but don’t tell 
anything about the frequency (because you need to look at how the signal changes to say 
something about the frequency). 



2.2 Fourierseries and –transform 
This section covers the different types of Fourier expansion will be covered. First the Fourier 
Transform will be discussed. The Fourier Transform is one of the most used tools in 
frequency analysis.  
 
 
 
 
Here the composition for a time discrete signal is shown. The main drawback of this method 
of representing signals the band limitation of the signals. 
The more intuitive version of frequency analysis is the Fourier series. In this case the signal 
doesn’t need to be band limited, but it has to be periodic. The basis functions in this case are 
infinite long sine and cosine waves. 
 
 
 
 
This equation shows the composition of a signal, when the coefficients of a Fourier series are 
given, and uses the complex notation. 
 
To summarize: There are two methods for frequency analysis. But each has its own 
drawbacks. Whereas the Fourier transform can handle signals with finite support, the signals 
have to be band limited. On the other hand the Fourier series can represent signals with 
arbitrary frequencies, but the signals need to be periodic, which means they need to have 
infinite support. 
 
As can easily seen for the Fourier series expansion, the localization in time is not existent 
(because the basis functions are defined from t=-∞ bist t=+∞), but the localization in 
frequency is infinitely sharp.  
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2.3 Short time fourier transform 
Up to now we had representations of signals which are either perfectly localized in time (but 
infinitely bad in frequency), or perfectly localized in frequency (but infinitely bad in time). 
Often something in between is needed. One common problem is the detection of changes in 
the spectrum. When thinking of a change, normally the words “before” and “after” come to 
our minds, which implies some sort of time resolution. So to detect changes in the spectrum 
we need a spectrum with time resolution, e.g. the spectrum of the last second of the time 
signal. The short time fourier transform (STFT) is one tool, which can provide such 
information. When applying the STFT, the time signal will be windowed, and a standard 
Fourier Transform will be computed over the windowed signal. To get STFT for the whole 
signal, which results in a periodogram, the window is shifted over the time signal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the top figure a sine sweep (x[n]) and the window (w[m]) are shown, in the bottom figure 
the resulting periodogram. On the x-axis is the time index n and the y-axis indicates the 
frequency at that time. 
 

2.3.1 Time and frequency resolution 
The analysis of the time and frequency resolution of the STFT is not that easy as in the 
previous cases. As said above, and as also seen in the periodogram, the STFT is actually a 
function of time and frequency. So the question about the accuracy of the STFT in time and 
frequency arises. The most important factor, which influences these accuracies, is the shape of 
the window function. If the window is wider, one can compute a more accurate Fourier 
transform, if the window is narrower, the time localization is much better. From this intuitive 
approach it is easily seen, that one can not optimize both frequency and time resolution. 
Actually there exists an equivalent to the Heisenberg uncertainty principle known from 
quantum mechanics. When taking a window, one can compute its Fourier transform and 
furthermore its distribution moments in the time and frequency domain. For the discrete 



time/frequency case the product of the standard deviations has to be equal to or greater than a 
half. 
 
 
Where σω is the standard deviation of the window in frequency domain, and σn is the standard 

deviation of the window in time domain. The value of ½ is just reached, if one uses a 
Gaussian window. 
 
One other important property of the time/frequency resolution of the STFT is its equality over 
all frequencies and time as seen below.  
 
 
 
 
 
 
 
 
 
 
 
When talking about the time resolution, it is of course desired that it is invariant with respect 
to the time parameter. On the other hand it is not always desired that the frequency resolution 
is independent of the frequency. The adaptation of the frequency resolution (and hence the 
time resolution too) to frequency is one major advantage of the Wavelet expansion. 
 

2.4 Piecewise Fourier series 
Another possibility to achieve finite time and frequency resolution, would be to window the 
time domain signal with a rectangle, continue it periodically and compute the Fourier series 
expansion of this new signal.  
Contrary to the STFT, which computes the Fourier transform of overlapping windows, this 
approach doesn’t compute redundant information. Furthermore one can represent arbitrary 
signals from the L2 space, because the Fourier series expansion enables one to represent band 
unlimited signals, and the way of constructing the signal, which is going to be used as input 
for the Fourier series expansion, guarantees that there is always a periodic signal, even if the 
original signal isn’t periodic. 
On the other hand there also some major drawbacks: Because of the non-overlapping 
windows, the result of this expansion is determined by the length and the location of the 
windows. E.g. if one wants to represent a pure sine with this method, the result changes if the 
length of the window is not a multiply of the sine period and the window is placed on 
different locations of the original signal. This happens because of the discontinuities at the 
window borders. 

2
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2.5 Desired Features of basis functions 
Up to now a few ways of representing signals were introduced. All of them have their 
advantages and drawbacks. Now the question arises, which properties are desirable and which 
are not? 

• Simple characterization 
If one wants to use signal representations for practical use, it is of course useful if it is 
simple to use 

• Localization properties in both, time and frequency domain 
On the one hand localization properties of the basis functions should be well defined, 
on the other hand one should be able to choose what resolution to use, and of course 
they should be as good as possible. 

• Invariance under certain operations 
The result of a transformation should not change if some operations are applied on the 
original signal. This property can be relaxed a little bit in a way, so that if you apply 
an operation on the original signal, the same operation is visible on the output of the 
transformation. E.g. if a time shift is applied on the original signal, one could not 
expect that the output of a STFT is the same as before the time shift, but the result is 
also shifted in time 

• Smoothness properties 
Sometimes it is useful, that basis functions can be derived or are continuous. 

• Moment properties 
Another thing which could be useful sometimes are certain moment properties. 
Especially zero moments make computations much easier. 

 
As can be seen, some of those properties conflict with each other, so that there is no optimal 
basis for function spaces. However, if an application is known, one can choose which 
properties are needed and then derive or just select a useful set of basis functions. 
 

3 Introduction to Wavelets 
In this chapter the basic ideas of Wavelets will be presented and discussed. First the idea of 
Wavelets is intuitively introduced using the Haar – Wavelet, after that a proof is given that the 
Haar – Wavelets are actually basis functions for the L2 – space, the concept of multi 
resolution analysis is highlighted and finally the Sinc – Wavelet is introduced to show the 
differences to the Haar – Wavelet. 
 



3.1 The Haar - Wavelet 
The Haar – Wavelet is one of the simplest Wavelet functions. The mother – wavelet is +1 
between 0 and 0.5, and -1 between 0.5 and 1. The wavelet is shown in the picture below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
To represent the whole space of squared sumabel functions, this mother – wavelet is scaled 
and shifted. 
 
 
 
In the above equation nm,φ is the scaled and shifted version of the mother wavelet (φ ). As can 
be easily seen, m indicates the scale and n the shift. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this figure we see the mother wavelet and its shifted versions in the middle row, n,1−φ  in the 
top row and n,1φ  in the bottom row. 
What was now achieved by using this way of constructing a basis for the L2 – space? One of 
the most important things is, that the frequency and time resolution is now depending on the 
frequency. 
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As can be seen in the figure, the higher the frequency, the better the time resolution but the 
frequency resolution suffers. One thing has to be highlighted: The area of this boxes (which is 
the product of the standard deviations) always stays the same! What are the advantages of 
using such a scheme (dyadic tiling of the time/frequency plane)? The two main reasons are: 
First, things which have a high frequency tend to happen fast (so good time localization is 
needed), second, low frequencies can be better discriminated, the relative minimal difference 
between two frequencies which can be differentiated stays the same over all frequencies. 
 

3.1.1 Ortho-normality of the Haar – Wavelet 
One major requirement for basis is their ortho-normality. Of course one can construct non-
ortho-normal basis too, but ortho-normal basis have some nice properties, which makes it 
easy to use them. A set of basis functions nm,φ  is ortho-normal, iff it satisfies following 
constraint: 

]'[]'[)(),( ',', nnmmtt nmnm −−= δδφφ  
That means, only the inner product of a wavelet at the same scale and with the same shift is 
equal to 1, every inner product of wavelets with different scales and/or shifts have to be zero. 
Are Haar – Wavelets fulfilling this constraint? Yes, they do.  
 
 
 
 
When staying the same scale, wavelets are always shifted, so that they don’t overlap. 
Therefore the projection wavelets in the same scale (identical m) but with different shifts 
(different n) is always zero. But what happens with different scales? In the figure above it is 
seen that the longer wavelet is constant over the support of the shorter one, and therefore the 
inner product is the average of a Haar – Wavelet, which is of course equal to zero. Just on 
thing has to be added: Because of the construction rule, it is not possible, that the jumps of the 
shorter and longer wavelet are the some position, so this reasoning is valid for the general 
case. 
 

3.1.2 Basis for L2 – Space 
Above it was shown that the Haar – Wavelets are actually ortho-normal to each other, but do 
they also form a basis for the space of functions in L2? Luckily they are. One intuitive 



explanation is based on the composition of a signal. A signal is given by the sum over all 
basis functions weighted with some coefficients. Using the construction rule for Haar – 
Wavelets, one could make m arbitrary large (that means the wavelet gets narrower and 
narrower) and therefore one can represent all functions of L2 using infinite such infinite small 
Wavelets. However, there is a more formal proof, which will be presented now. This proof 
also presents the concepts of multi resolution analysis of signals. 
 
To start the proof, lets consider functions which are constant on an interval 

]2)1(,2[ 00 mm nn −− +  and have finite support on the interval ]2,2[ 11 mm− . It is obvious, that if 
choosing both m0 and m1 large enough, every L2 function can be approximated arbitrarily 
well. Such piecewise constant functions are called )()( 0 tf m−  from now on. 
This piecewise constant functions can be represented by a sum of indicator functions )(,0

tnm−ϕ : 
 
 
 
 
 
The height of the indicator functions is scaled, so that they have unit norm. This function is 
called the scaling function. As said above the piecewise constant function )()( 0 tf m−  can be 
written as a sum of indicator functions: 
 
 
 
 
 
 
 
Where N is just a stating how wide the support and how detailed the piecewise constant 
function is, and )( 0m

nf −  is the coefficient for the particular scaled and shifted scaling function. 
 
The key step in this proof is the relation between two adjacent intervals: 
[ ) [ )0000 2)22(,2)12(2)12(,22 mmmm nnnn −−−− +++  and . The piecewise constant function 

)()( 0 tf m−  over these two intervals is: 
 
 
 
Just the sum of two versions of the scaling function with their respective coefficients. But 
there is another way to describe the function over these two intervals. One can compute the 
average of the two intervals and then add the difference between the average and the original 
function. To compute the average, the scaling function with 10 +−= mm  is used (that scaling 
function is as wide as both intervals together), to compute the difference to the original 
function, the Wavelet of scale 10 +−= mm  is used. Remember, this special wavelet has 
actually two parts which directly correspond to the old intervals. The mathematical expression 
of the average 
 
 
 
 

)()( 12,
)(

2,
)(

0

0

120

0

2
tftf nm

m
nm

m
nn +−
−

−
−

+
+ ϕϕ

)2(2

2

)(

002
0

0

10

0

00

)()(

1

,
)()(

mmm
n

mm

N

Nn
nm

m
n

m

nff

N

ftf

m
−−−

+

−

−=
−

−−

−

=

=

= ∑ ϕ

⎪⎩

⎪
⎨
⎧

+<≤=
−−

−

otherwise
ntnt

mm
m

nm
0

2)1(22)( 00
0

0

2
,ϕ

)(2
2 ,1

)(
12

)(
2

0

00

tff
nm

m
n

m
n

+−

−
+

− + ϕ



ánd the difference using the wavelet function )(,10
tnm +−φ : 

 
 
 
 
Do ease the derivation a little bit, we introduce coefficients for the Scaling function and the 
wavelet, )1( 0+−m

nf  and )1( 0+−m
nd  respectively: 

 
 
 
 
 
 
 
This results in following expression for our original two intervals: 
 
 
 
Just the average over the two intervals plus the difference. To represent the whole function 

)()( 0 tf m− , the explained mechanism is just applied to all adjacent pairs of the whole function. 
After doing this, following representation is achieved: 
 
 
 
 
 
 
 
The piecewise constant function )()( 0 tf m−  is represented as the piecewise constant function 
with longer constant intervals (actually twice as long), plus the error which is made when 
computing the average. The second equation is just the more detailed representations with all 
the scaling functions and wavelets with their respective coefficients. To state again, the 
original function is decomposed into “average” (coarse) and “difference” (details). 
 
Now the final step will be applied: Decompose )()()( )2()2()1( 000 tdtftf mmm +−+−+− += , that 
means the old average in a new average and details and do this repeatedly. Finally 

 
 
 
 

is obtained. Where )()1( tf m  is a residual average function. However, it can be shown that the 
norm of this residual decreases when it is decomposed further. However this decomposition 
doesn’t contribute to the basic idea of the proof, so it will be skipped. The residual is 
expressed as Mε  in the right representation. As the residual error can be made arbitrary small, 
and m0 and m1 can be made arbitrary large, this shows that the Haar – Wavelet is sufficient to 
represent all functions from L2. The scaling function is not needed. 
 
The key of the proof and also the key idea of wavelets, is the decomposition of a signal in a 
coarse approximation and the details which get lost during that coarse approximation. This is 
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also the basic property of the multi resolution analysis, which will be covered in the next 
chapter. 
 
 

4 Multi resolution Analysis 
The multi resolution concept directly follows from the construction of wavelets. Repeatedly 
applying the decomposition of a fine signal in a coarse approximation and the difference 
between the fine signal and coarse approximation leads to a representation which just needs 
successive details to represent L2 signals.  
It will be shown, that the coarse approximation and the details to add are orthogonal subspace 
of the space of the fine signal.  
 

4.1 Axiomatic Definition 
• Enclosed Subspaces 

KK 21012 −− ⊂⊂⊂⊂ VVVVV  
• Upward Completeness 

)(2 RLVm
Zm

=
∈
U  

• Downward Completeness 
}0{=

∈
m

Zm
VI  

• Scale Invariance 
0)2()( VtfVtf m

m ∈⇔∈  
• Shift Invariance 

ZnVntfVtf n ∈∀∈−⇒∈ )()( 0  
• Existance of an ortho-normal basis 

 
To make things a bit clearer, this axioms will be explained starting from the top. When talking 
about enclosed subspaces as defined, it is important to note that signals which can be 
represented by V0 can also be represented by V-1 as V0 is subset of V-1.  
Upward Completeness means, that all Subspaces combined result in the L2 space, which 
means such a multi resolution approach can actually represent those signals. Downward 
completeness means, that there is no error left. 
Scale Invariance is kind of clear. If you scale a function which can be represented by Vm by 
2m it can then be represented by V0. It is also the same with shift invariance: Shifted versions 
of a function are still represented by the same subspace. 
Finally this subspaces have to be spanned somehow, so there has to be a basis for them. As 
one can normalize basis, it is not needed that those basis are ortho-normal from the beginning. 
 

4.2 Orthonormal Complements 
In the last section the axioms which are needed for multi resolution analysis were defined and 
discussed. But how does this fit together with wavelets and the proof which was discussed 
above? 
As said above, Vm is a subspace of Vm-1. That means, if you substract Vm of Vm-1, there has to 
be something left. Actually this is the ortho-normal complement of Vm in Vm-1. It will be 
called Wm. That means, if Vm and Wm are combined, the result is Vm-1.  
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Now the spaces Vm are said to be the spaces of the scaling functions and Wm are the spaces of 
the wavelets. By repeating the process of splitting up Vm-1 into its subspace Vm and its 
orthogonal complement Wm for all m, we get 
 
 
 
This is equivalent with the result we got above, when proving that the Haar Wavelet is 
actually able to represent all functions of the L2 space. 
 

5 Constructing the Sinc – Wavelet 
While discussing the basic properties of wavelets, the Haar – Wavelet was used as an 
example. One thing which was not covered in the discussion about wavelets up to now was 
their frequency and time resolution, except that the wavelet construction introduces the dyadic 
tiling of the time/frequency plane. The actual size of the box was not discussed. Thinking 
about the Haar – Wavelet, which is basically build up from two rectangular signals, it is 
intuitively seen that it will have a good localization in time but a bad one in frequency. The 
opposite of the spectrum, good localization in frequency but a bad one in time, is reached 
when using the Sinc – wavelet. The Haar – Wavelet uses a scaling function which has limited 
support in time, the Sinc – wavelet uses a scaling function which has limited support in 
frequency, hence is band limited. As the name already suggests, this is the Sinc – function. 
 
 
 
 
The space V0 will include the functions which are band limited to [-π, + π], V-1 the functions 
which are band limited to [-2π, +2π]. Using the knowledge gained in the multi resolution 
section, W0 will then be then be the functions which are band limited to [-2π, -π] and [+π, 
+2π]. As can be easily seen, combining V0 and W0 results in V-1. So what is the wavelet 
function? 
 
As already discussed, V0 is a subspace of V-1, so functions in V0 can be represented by 
functions in V-1. As )(tϕ  is in V0, it can be represented by functions in V-1: 
 
 
 
 
 
 
 
The function g0 and its fourier transform G0 is the characteristic function of a multiresolution 
analysis and the key step in construction wavelets, when starting with a scaling function. 
Without proof it is shown, how to construct g1 and then the mother wavelet. 
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For the sinc – case these functions are given by: 
 
 
 
 
 
 
 
And finally the sinc – wavelet 
 
 
 
 
In the figure below, the scaling function and the wavelet are shown. 
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6 Iterated filter banks 
Until now we have constructed wavelets by using orthonormal families of functions by 
scaling and shifting. This continuous time approach is directly based on the axioms of 
multiresolution analysis.  
From now on we will derive wavelets by using discrete time filters. These filters can be 
iterated under certain conditions and will also lead to continuous time wavelets. We will have 
a recap of the Haar and Sinc case which can be seen as limits from iterated filter banks. This 
construction can be generalized. The key property of such discrete time filters is the regularity 
condition. Discrete filters can be called regular if they converge to a scaling function with 
some degree of regularity (piecewise smooth, continuous, or derivable). 
 

6.1 Haar case 
We start now with the discrete Haar filters. We know that the lowpass averages two 
neighboring samples and the highpass builds the difference of them. The filter bank for this is 
given by the basis functions g0 and g1. Know we start to iterate the filter bank on the lowpass 
channel (see Figure 1).  
 

 
Figure 1: Iterated filter bank 

 
We know will derive from this contruction an equivalent filter bank by using results from 
multirate signal processing. Filtering by g0 followed by upsampling by two is the same to 
upsampling by two, followed by filtering by g’0 (= upsampled version of g0). By doing so we 
can transform the iterated filter bank into one equivalent to a filter which is shown in Figure 
2.  
 

 
Figure 2: Transformed filter bank 

 
This is a size 8 discrete Haar transform of sucessive blocks of 8 samples. By iteration of the 
lowpass and highpass channels we will come to two filters (Figure 3):  



 
Figure 3: Iterated filter equations 

 
From the filter equations we can see, that g0 is a lowpass filter and g1 is a bandpass filter. We 
also can see a interesting property. If we increase the iterations depth the length of the filter 
also increases exponentially and on the other side the coefficients go to zero.  
 
If we now define the continuous time function with g0 and g1 in this way: 

 
Figure 4: Continuous time functions 

 
These functions are piecewise constant and their lengths remain bounded.  
 

6.2 Sinc case 
As a counterpart for the Haar case we now have a look at the sinc case. In this case the filters 
in the filter bank are ideal low- and highpass filters. The impulse response for the lowpass 
filter is:  
 
 
 
The perfect high pass filter can be constructed by modulating (-1)n and shifting by one. For 
the impulse response we get with use of the lowpass filter:  
 
 
Then we transform both impulse responses and we will get:  

Figure 5: Fourier transform of g0[n] 
 

Figure 6: Figure 5: Fourier transform of g1[n] 
We now will do the same as in the Haar case. We consider the iterated filter bank with ideal 
filters. For instance upsampling the filter responses by two will lead to a filter with a smaller 
bandwidth (and so on for further iterations). In a related way the transfer function of the 
highpass filter can be constructed and leads to a bandpass filter.  
Now we have our filter we can emulate the Haar construction for the low- and highpass 
impulse responses g0[n] and g1[n] which are the iterated filters.  
Then we can define a φ(t) as we have seen in Figure 4. In the sinc case we are interested in the 
Fourier transform of this scaling function and we will obtain 
 
 
 
where the iterated transfer function can be rewritten as 
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and we will end up with a compact version of the Fourier transform:  
 
 
 
 
So know lets have a look on the different parts of this formula. The right part (exponential and 
sin-function) is just a phase factor and interpolation function and if we let the number of 
iterations i grow this part becomes nearly one for any finite frequency ω.  
So let’s have a look on the first part in the brackets. The product is a 2i2π periodic function 
between – π and + π. So if we let i grow, we will end up with a perfect lowpass filter from – π 
and + π which is the sinc scaling function. For the wavelet function we can do it similarly and 
we will end up with known results.  
This seems to be a very cumbersome way to derive results we already have known. But we 
have gained a more general construction and we have seen the key for this analysis is the 
product in the brackets. For regularity analysis we have to investigate this infinite product.  
 

6.3 Iterated filter banks cont.  
Now we will use the derivation of the Haar and sinc wavelets using iterated filter banks to 
make a more general construction for wavelet bases. Once again we start with our two filters 
g0[n] and g1[n], which are low- and highpass filters. For the iterated filter bank we will iterate 
the on the lowpass channel branch (to infinity). As we have done this in the two constructions 
above we will now reformulate our particular filters by their iterated representations (by using 
multirate identities). So we will end up with following transfer functions for our filters:  

 
 
Then we will associate the iterated filters with the time functions to obtain the scaling 
function and the wavelets as follows:  

 
These functions had to be rescaled and normalized for regularity reasons. In Figure 7 we can 
four iterations of a length 4 filter. We can see the scaling function φ is a piecewise constant 
approximation and in every iteration we halve the interval.  
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Figure 7: Iterated filter equations 

 
For the Fourier domain we can do the same as we have done in the sinc case. For the iterated 
scheme we have to investigate the limits of the scaling and wavelet functions.  

 
As we have figured out in the sinc case we only focus our interest on the term in the brackets 
(because the second part converges to one). For the Fourier domain the limit will be 

 
 
And it turns out that these two functions are really scaling functions which can be obtained as 
limits of discrete time iterated filters.  
 
The existences of these limits are very critical conditions. We can easily say that these limits 
exist if the filters are regular. That means that regular filters leads, through iteration to a 
scaling function. The key for the regularity analysis is the behavior of the infinite product. 
There are convergence questions and if convergence exist we have also answer in what sense 
the convergence exist and which properties can be fulfilled. In this report we will not dig 
deeply into these discussions. There are several approaches to investigate this behavior which 
gives us sufficient conditions. Some of them are also necessary but also to restrictive. In 
general we can say that this part is still an open topic for research.  
 

7 Wavelet series and properties  
The purpose of this section is to have a look on the wavelet construction and onto the 
properties. The following will be an enumeration of some general properties. First we review 
and define the problem as follows  
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where ψ is the mother wavelet and f(t) is any function in the L2(R) space.  
 

7.1 Linearity 
If we suppose an operator T which is defined as 
 
 
 
 
 
Therefore we can say that the wavelet operator is linear (so far unproven but it can be 
followed from the linearity of the inner product).  
 

7.2 Shift 
First we have a look on the shift property of the Fourier transform where a function f(t) 
transforms into F(ω) and a time shift of the function f(t-τ) transforms into exp(-jωτ)*F(ω).  
What happens now with the wavelet series. The function and its coefficients are written as f(t) 
and F[m,n]. If now f(t) is shifted by τ, we investigate the function f(t-τ):  
 
 
 
 
 
 
If we now rewrite the shift as a multiple of 2-mτ then we can figure out following transform 
property: 
 
 
 
 

7.3 Scaling 
Once again we first have a look on the scaling property of the rare Fourier transform which is 
given by a function f(t) and its transform F(ω). If we now scale f(t) with a parameter a so that 
f(at) then the Fourier transform is 1/a*F(ω/a).  
For the wavelet expansion we can write 
 
 
 
 
 
Similarly as in the shift case we can rewrite the scaling factor as a power of two and we will 
come to following property 
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7.4 Dyadic sampling and time frequency tiling 
When we have a look on the series expansion it is important to locate the basis functions in 
the time frequency plane. The sampling in time, at a specific scale m takes place with a period 
2m when we fulfill    
 
 
On the other side frequency is the inverse of scale, we find when the wavelet is centered 
around ω0 then )(, ωnmΨ is centered around ω0/2m. This leads to dyadic sampling of the time 
frequency plane. In Figure 8 we can such a time frequency plane where the scale axis is 
logarithmic and in relation to this we have a wavelet representation where we have a linear 
scale axis (Figure 9).   
 

 
Figure 8: Dyadic sampling (logarithmic) 

 
Figure 9: Dyadic sampling (linear) 

 

7.5 Time localization 
In general localization is the major advantage of the wavelet representations. For the time 
localization we suppose that we interested in the signal around a specific time t = t0. Now we 
want to know which values of F[m,n] are related to the signal and which values of F[m,n] 
carry information of the signal f(t0).  
First suppose a wavelet which supports )(ωΨ in the interval [-n1, n2]. Then )(0, ωmΨ is in the 
range of [-n12m, n22m] and further more )(, ωnmΨ is supported [(-n1+n)2m, (n2+n)2m]. At a 
specific scale m, the wavelet coefficients with index n satisfy that 
 
 
 
 
 
In Figure 10 we can which region carries information about the scale in the wavelet F[m,n].  
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Figure 10: Time localization 

 

7.6 Frequency localization 
Similarly as we have done in the time localization we know interested which region in F[m,n] 
carries some information about the frequency localization. First we have a look at the Fourier 
transform of ( ) ( )ntt mm

nm −= −− 22 2/
, ψψ  which is ( ) ωω njm m

e 2m/2 22 −Ψ . Then we can write 
F[m,n] as   
 
  
 
 
 
To narrow the region of interest we say the wavelets vanishes in the Fourier domain outside a 
specific region [ωmin,ωmax] (the coefficients need not to vanish but most of the energy should 
be in there). At a specific scale the support of )(, ωnmΨ will be [ωmin/2m,ωmax/2m]. So we can 
say that a frequency component around a specific frequency ω0 influences the wavelet series 
at scale m if 
 
 
 
 
 
 
 
 
In Figure 11 we can see which values will be influenced from a specific frequency.  
 

 
Figure 11: Frequency localization 
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7.7 Decay properties 
The Fourier series can be used to characterize the regularity of a signal, which can be done by 
looking on the decay of the transform coefficients. The drawback of the Fourier analysis is 
that we only come down to a global regularity of the signal. This is another advantage of the 
wavelet transform. When we look here on the coefficients of the transform we can estimate a 
local regularity of the signal.  
 

7.8 Multidimesional wavelets 
For applications like image compression, we can extend the theories of one dimensional filter 
banks can be extended to multiple dimensions. A direct way to construct multidimensional 
wavelets is to use tensor products and their one dimensional counterparts. This will lead us to 
one scaling function with three different mother wavelets. The scale changes will now 
represented in a matrix which offers several advantages but also restrictions on the matrix. 
The link to filter banks can be easily found but the task is much harder (incomplete cascade 
structures).  
 

8 Practical aspects 
This section should give a short overview where to start in matlab and what possible 
applications are for instance in image processing.  
In matlab there is whole toolbox which deals with wavelet implementations. For a short 
overview have a look on the “wavemenu”. There are several possibilities to use and different 
approaches. The only suggestion we can give here is to start at this point and work through 
topics which you are interested in.  
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