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Signal Decomposition

Decompose signals into fundamental constituents

Transformation from one domain to another (time -
frequency)

Simpler ways of analyzing and processing signals

Complex operations are simplified (e.g. convolution,
differentiation, integration)

To understand later expansions mathematical background
is needed...
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Important questions

Given a set of vectors {vk}

Does {vk} span the space Rn or Cn?

Are the vectors linearly independent?

How can we find (orthonormal) bases for the space to be
spanned?

Given a subspace of Rn or Cn and a general vector - finding
an approximation in the least-squares sense?
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Vector Spaces and Inner Products (1)

Given vector space E
A subset M of E is a subspace of E if

(a) ∀ x,y in M, x+y is in M
(b) ∀ x in M, α in C or R, αx is in M

A subset of E is called basis of E when

(a) E = span(x1, ..., xn)
(b) (x1, ..., xn) are lin. independent

where
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Vector Spaces and Inner Products (2)

Inner Product on a vector space E over C(or R) is a
complex-valued function defined on E x E mapping to a
scalar with the following properties:
(a) 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉
(b) 〈x , αy〉 = α 〈x , y〉
(c) 〈x , y〉∗ = 〈y , x〉
(d) 〈x , x〉 ≥ 0
e.g. Standard Inner Products

Definition of Norm from Inner Product

‖x‖ =
√
〈x , x〉
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Vector Spaces and Inner Products (3)

Given u,v ∈ E

orthogonal ⇔ 〈u, v〉 = 0

Orthogonal projection
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Hilbert Space

Vector space E with inner product is called Inner Product
Space

If every Cauchy sequence in E, converges to a vector in E,
then E is complete

A complete inner product space is called a Hilbert Space

e.g. Space of Square-Summable Sequences - Hilbert
Space l2(Z ) ,space of sequences x[n] having finite square
sum or finite energy
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Orthonormal Bases

A set of vectors S = {xi} is said to be an orthonormal
basis if

all xi are orthogonal
all xi are normalized to unit length
S is complete

Orthonormal system {xi} is called orthonormal basis of E,
if for every y in E,

y =
∑

k αkxk ,where

αk = 〈xk , y〉

coefficients of expansion are called Fourier coefficients
Approximation is optimal in least-squares sense
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General Bases

Orthonormal bases are very convenient, but
nonorthogonal or biorthogonal bases are important as well{

xi , x ′
i

}
constitutes a pair of biorthogonal bases iff〈

xi , x ′
j

〉
= δ [i − j] for all i,j in Z

Signal expansion formula becomes

y =
∑

k 〈xk , y〉 x ′
k =

∑
k
〈
x ′

k , y
〉

xk

Overcomplete Expansions
Signals as linear combination of an overcomplete set of
vectors - no longer lin. ind.
expansion is not unique anymore
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Eigenvectors, Eigenvalues

a vector p 6= 0 is called eigenvector if
Ap = λp

roots of characteristic polynomial D(x) = det(xI-A) of matrix
A are called eigenvalues
if nxn matrix has n lin. ind. eigenvectors it can be
diagonalized

A = TΛT−1

importance of eigenvectors in study of linear operators
comes from the following fact

assuming vector x =
∑

αivi
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Special Matrices (1)

circulant matrix Toeplitz matrix

polynomial matrix
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Special Matrices (2)

An example for a matrix with toeplitz structure is the
autocorrelation matrix

where rxx [m] = E {x [n] x [n + m]}
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What we’ve done so far...

... Inner Product

... Hilbert Space

... Projection

... Orthonormal and general bases

... Eigenvectors and Eigenvalues
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General Signal Expansions and Nomenclature

Continous-time integral expansion (e.g. CTFT)

Continous-time series expansion (e.g. CTFS)

Discrete-time integral expansion (e.g. DTFT)

Discrete-time series expansion (e.g. DTFS)
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Continous-time Fourier Transform

Fourier analysis formula

Fourier synthesis formula
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Properties of Fourier Transform (1)

Linearity

Shifting

Scaling

Differentiation / Integration
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Properties of Fourier Transform (2)

Convolution of two functions

Convolution theorem

Complex exponentials are eigenfunctions of the
convolution operator
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Properties of Fourier Transform (3)

Because the Fourier Transform is an orthogonal transform,
it satisfies an energy conservation relation known as
Parseval’s Formula
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Fourier Series

Given a periodic function f(t) with period T,

f (t + T ) = f (t)

Synthesis Formula

Analysis Formula
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Dirac Function

Defined as a limit of rectangular functions
Infinitesimally narrow, infinitely tall, yet it integrates to unity
Some relations
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Impulse Train

Train of Dirac functions spaced T > 0 apart, given by

Fourier Transform of impulse train
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Sampling

Central to discrete-time signal processing, since it provides
link to continous-time domain
Call fT (t) the sampled version of f (t), obtained as,

And the Fourier Transform of the sampled time signal is,
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Sampling Theorem

If f (t) is continous and bandlimited to ωm, then f (t) is
uniquely defined by its samples taken at twice ωm. The
minimum sampling frequency is ωs = 2ωm.

f (t) can be recovered by the following interpolation formula

24 / 34



Overview
Vector Spaces, Hilbert Spaces, and Key Notions

Fourier Theory and Sampling
Time-Frequency Representations

Various Flavors of Fourier Transforms (I)
Sampling
Various Flavors of Fourier Transforms (II)

Alternative view on sampling

Sinc-functions form an orthonormal system
Standard sampling system (including anti-aliasing prefilter)
may be interpreted as an orthogonal projection of
not-necessarily band-limited input signals onto the space
of band-limited signals
Different interpretation of reconstruction formula

Due to the orthogonality the projection into the space of
bandlimited signals yields the minimum-error
approximation
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Discrete Fourier Transform (1)

Very important for computational reasons - can be
implemented using the FFT
The DFT consists of inner products of the input signal f
with sampled complex sinusoids
Analysis formula

Synthesis formula
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Discrete Fourier Transform (2)

Can be thought of as the transform of one period of a
periodic signal, or a sampling of the DTFT of a finite signal
The DTFT is a function of continous frequency whereas
the DFT is a function of discrete frequency
DFT can also be formulated as a complex matrix multiply
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Frequency, Scale and Resolution (1)

Fourier transform and it’s variations are very useful tools,
but practical applications require basic modifications

”Localization” of the analysis is needed
not necessary to have the signal over (−∞,∞) to perform
the transform
local effects (transients) can be captured with some
accuracy

Important concept in this context is the uncertainty
principle
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Frequency, Scale and Resolution (2)

Various ways to define the localization of a particular basis
function, but they are all related to the ”‘spread”’ of the
function in time and frequency
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Frequency, Scale and Resolution (3)

Basic operations: shifting, modulation, scaling
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Uncertainty Principle

Sharpness (resolution) of time analysis can be traded off for
sharpness in frequency, and vice versa
Measure for width in time and frequency

If the waveform is well-localized in both frequency and time, then
the time-bandwidth product ∆t∆ωwill be small
Uncertainty Principle
If f(t) is differentiable and vanishes faster than 1√

|t|
as t → ±∞,
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Short-Time Fourier Transform and Wavelet Transform
(1)

STFT
”local” Fourier transform

Wavelet Transform
Basis function usually is a
bandpass filter that is
shifted and scaled
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Short-Time Fourier Transform and Wavelet Transform
(2)
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Conclusion

Inner product is used to project one vector onto another

Every signal expansion can be seen as a projection onto a
Hilbert Space

Problem with Fourier transform - no localization in time

Modifications aim at ”localizing” the analysis

Not possible to become a arbitrarly sharp resolution in both
domains simultaneously
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