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A common theme in many signal processing applications is to decompose a signal into its 
primitive or fundamental constituents and perform simple operations separately on each 
component. Signal decomposition or expansion, as it is often called, can also be seen as a 
transformation of the original signal from one domain to another (e.g. time to frequency). This 
transformation then helps in analyzing and processing the signal, e.g. it is possible to analyze 
which frequency region contains most of the energy. Also many complicated operations have 
simpler equivalents in the other domain (e.g. differentiation in case of the Fourier transform 
becomes a multiplication). But to understand the notions used for the expansions that are 
explained later in this document one also needs to have the mathematical framework. 
 

 
When dealing with these questions two key notions to address them are 

- The length, or norm, of a vector 
- The orthogonality of one vector with respect to another 

The ideas behind them can then be generalized to infinite spaces where we restrict the vectors 
to have finite length or norm (even though they are infinite-dimensional)  
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Important and often encountered notions when talking about vector spaces are the notion of a 
subspace and a basis of a vector space. For the definition of a basis one needs to know what is 
meant by the span(S) of a set of vectors and by linear independence of a set of vectors. The 
span of a set of vectors is the set of vectors that can be given as a linear combination of 
vectors in S. Linear independence of a vector set S signifies that no vector in S can be build 
by a linear combination of the other vectors in S. 
 

 
In simple terms, the inner product measures the relative alignment (angle in case of Euclidean 
space) between two vectors. This adds additional structure to a given vector space. The inner 
product defines a norm, although not every norm can be defined by an inner product. 
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Inner product is also used to define orthogonality and for projecting one vector onto another 
vector. A set of vectors is called orthogonal if the vectors are pair wise orthogonal. If they are 
normalized to unit norm the vectors form an orthonormal system. 
 

 
The question of completeness of a space deals with the question, whether the span of a set of 
vectors covers the whole space or not. In other words this means that every vector in the space 
can be represented as a linear combination of the basis vectors. A Cauchy sequence of vectors 
is a sequence where the distance between its elements eventually becomes arbitrarily small 
(the sequence converges). 
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Among all possible bases in a Hilbert space, orthonormal bases play a very important role. 
Every arbitrary basis can be orthogonalized by a procedure from linear algebra, called Gram-
Schmidt Orthogonalization. If we have an orthonormal basis to a vector space E, then every 
vector can be represented by a linear combination of the basis vectors, where the coefficients 
are the projection coefficients of the vector onto each basis vector and are called Fourier 
coefficients. If we are trying to approximate a vector from a higher-dimensional Hilbert space 
E by a vector lying in a subspace S of E, the orthogonal projection onto S yields an 
approximation that is optimal in the least-squares sense. 
 

 
The term biorthogonal is used since to the (nonorthogonal) basis corresponds a dual basis 
which satisfies the biorthogonality constraint. If the basis is orthogonal, then it is its own dual. 
Overcomplete expansions are the starting point when talking about frames. 
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Every Matrix can be seen as a linear operator representing a system. If a vector, which is fed 
to the system, is only scaled, then this vector is called an eigenvector of the system. The 
corresponding scaling factor is called an eigenvalue of the system. The concept of 
eigenvectors generalizes to eigenfunctions for continous operators. A classic example is the 
complex sinusoid. 
 

 
Many matrices exist that have a special structure. Polynomial matrices are often used in 
Signal Processing, because a FIR filter system can be represented by a polynomial. Also IIR 
filter systems can be represented by matrices of rationals. 
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As mentioned before the inner product is used to project one vector onto another. Each 
expansion is just the projection (using an inner product) of the input onto a corresponding 
basis. Depending on the type of basis functions and the input, e.g. whether they are 
continuous or discrete, different types of signal expansions are used. Be aware of the usage of 
biorthogonal bases in the above equations. 
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Given an absolutely integrable function f(t), the Fourier analysis and synthesis formulas are 
defined like above. The factor 1/(2π) in the synthesis formula comes from the usage of ω and 
can be easily explained when using the frequency f and making a variable substitution. The 
continuous-time Fourier transform is a projection, using an inner product, onto complex 
sinusoids used as a basis. 
 

 
The Fourier transform satisfies a number of properties, some of which are shown above.  
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As mentioned earlier some operations in one domain have simpler equivalents in the other 
domain.  
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Fourier series, beside their obvious use for characterizing periodic signals, are useful for 
problems of finite size through periodizitation. A problem which then occurs is the 
introduction of discontinuities at the boundary, since in general, periodizitation of a 
continuous signal on an interval results in a discontinuous periodic signal. 
 

 
More generally, any smooth function can be used to define the Dirac delta. While the Dirac 
delta function in the continuous domain has to be treated with care, its equivalent, the discrete 
Dirac delta impulse is simply defined to be a one at time instant zero, and zero otherwise, in 
the discrete domain. 
 
 



Advanced Signal Processing 2  Fundamentals of Signal Decomposition 
 

 
Lessiak Andreas  12/18 

 
The impulse train is a very important tool in sampling theory.  
 

 
Sampling the spectrum and periodizing the time-domain function are equivalent. The same 
holds for the dual situation, where sampling the time-domain function leads to a periodized 
spectrum. 
A sampled signal can also be seen as a continuous signal multiplied by the above defined 
impulse train. In the frequency domain this multiplication results in a convolution. Therefore 
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the spectrum of the sampled signal is the periodized version of the spectrum of the continuous 

signal. The copies of the spectrum are spaced 2
T
π  apart. 

 

 
The famous theorem by Whitaker, Kotelnikov and Shannon states that a bandlimited signal 
can be completely reconstructed if the sampling frequency is twice the maximal signal 
frequency. Note that the sinc – function has the interpolation property since it is 1 at the origin 
but 0 at nonzero multiples of T. 
 

 
An alternative interpretation of the sampling theorem is as a series expansion on an 
orthonormal basis for bandlimited signals. Another way of writing the interpolation formula is 
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where, ,
1 sinc ( )n T T t nT
T

ϕ = −  form an orthonormal basis for the space of bandlimited 

functions. 

 
There is a close relationship between the DTFT and the DFT. The DFT can be thought of as 
the transform of one period of a periodic signal, or a sampling of the DTFT of a finite-length 
signal. In contrary to a DTFT f[n] and F[k] are not defined for { }, 0,..., 1n k N∉ −  in the case 
of a DFT. 
 

 
Because of the finite-length signals involved the DFT can be represented as a matrix-vector 
product. 
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Fourier analysis is not always the best tool to analyze a signal whose characteristics vary with 
time. If, for example, a signal composed of two sinusoids with different frequencies and a 
glitch at time instant t0 is fourier transformed the glitch causes a wide spread of frequency 
components and is therefore not efficiently described. Another simple example would be a 
time-domain signal consisting of one period of a sine – the sine is rectangulary windowed. 
Fourier theory says that a rectangular window results in a sinc – like frequency spreading. So 
more localized transforms are needed.  
 

 
To define localization of a particular basis one can define intervals It and Iω which contain 
90% of the energy of the time- and frequency-domain functions, respectively, and are 
centered around the center of gravity of 2( )f t and 2( )F ω . This defines what is called a tile 
in the time-frequency domain. 
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Modulation by 0j te ω  or a shift by τ simply result in a translation of the tile in the 

corresponding direction. Scaling by a, or ( ) ( )f t f at′ = , results in 1( ) ( )I t I t
a

′ = and 

( ) ( )I aIω ω′ = . Therefore scaling affects both the shape and the localization. In the case of 
scaling as shown in the slide above resolution in time was traded for resolution in frequency. 
 

 
There is no way to get an arbitrarily sharp resolution in both domains simultaneously and the 
uncertainty principle gives a lower bound that can not be passed. If a waveform is well-
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localized in time it will have a small tΔ and if it is well-localized in frequency it will have a 
small ωΔ . 

 
To achieve a “local” Fourier transform, one can define a windowed Fourier transform. The 
signal is first multiplied by a window function w(t-τ) (e.g. Hamming, Hanning, Gaussian,…) 
and then the usual Fourier transform is taken. That is, one measures the similarity between the 
signal and shifts and modulates of an elementary window. The spectrogram is the energy 
distribution associated with the STFT.  
Instead of shifts and modulates one can choose shifts and scales of a prototype function (e.g. 
bandpass filter with zero mean and certain impulse response) and obtain a constant relative 
bandwidth analysis known as wavelet transform. 
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