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Overview

@ Vector Spaces, Hilbert Spaces, and Key Notions
@ Basic concepts from Linear Algebra
@ Fourier Theory and Sampling

@ Time-Frequency Representations
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Vector Spaces, Hilbert Spaces, and Key Notions

Signal Decomposition

@ Decompose signals into fundamental constituents

@ Transformation from one domain to another (time -
frequency)

@ Simpler ways of analyzing and processing signals

@ Complex operations are simplified (e.g. convolution,
differentiation, integration)

@ To understand later expansions mathematical background
is needed...

oo
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A common theme in many signal processing applications is to decompose a signal into its
primitive or fundamental constituents and perform simple operations separately on each
component. Signal decomposition or expansion, as it is often called, can also be seen as a
transformation of the original signal from one domain to another (e.g. time to frequency). This
transformation then helps in analyzing and processing the signal, e.g. it is possible to analyze
which frequency region contains most of the energy. Also many complicated operations have
simpler equivalents in the other domain (e.g. differentiation in case of the Fourier transform
becomes a multiplication). But to understand the notions used for the expansions that are
explained later in this document one also needs to have the mathematical framework.

nd Inner Products
Vector Spaces, Hilbart Spaces, and Kay Notions

Important questions

@ Given a set of vectors { vy}
e Does {vy} span the space R" or C"?
@ Are the vectors linearly independent?

@ How can we find (orthonormal) bases for the space to be
spanned?

@ Given a subspace of R" or C" and a general vector - finding
an approximation in the least-squares sense?

TUG

When dealing with these questions two key notions to address them are

- The length, or norm, of a vector

- The orthogonality of one vector with respect to another
The ideas behind them can then be generalized to infinite spaces where we restrict the vectors
to have finite length or norm (even though they are infinite-dimensional)
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Vector Spaces, Hilbert Spaces, and Key Notions

Vector Spaces and Inner Products (1)

@ Given vector space E
o A subsetM of E is a subspace of E if

(a) Vx,yin M, x+y isin M
(b)¥xinM, ainCorR, axisinM

o A subset of E is called basis of E when

(a) E = span(xy, ..., Xn)
(b) (x1,...,Xp) are lin. independent

where

span( )= Jl ) @x, |a.- eCorR.x e S}‘
P

n
linind 1f Zal,\‘l =0istrue only if, &, =0, ¥i
i=1

Important and often encountered notions when talking about vector spaces are the notion of a
subspace and a basis of a vector space. For the definition of a basis one needs to know what is
meant by the span(S) of a set of vectors and by linear independence of a set of vectors. The
span of a set of vectors is the set of vectors that can be given as a linear combination of
vectors in S. Linear independence of a vector set S signifies that no vector in S can be build
by a linear combination of the other vectors in S.

Spaces and Inner Products

Vector Spaces, Hilbert Spaces, and Key Notions
fLin

Vector Spaces and Inner Products (2)

@ Inner Product on a vector space E over C(or R) is a
complex-valued function defined on E x E mapping to a
scalar with the following properties:

(@) (x+y.z)=(x.2)+{y.2)
(b) (x,ay) = a(x.y)
(©) (x.y)" =y, x)
(d) (x,x) =0
@ e.g. Standard Inner Products

(r.g)=[ 1 gy

{x.y)= Z x [n]y[n]

@ Definition of Norm from Inner Product o'l
TUG

[ x| =/ (x, Xx) )
In simple terms, the inner product measures the relative alignment (angle in case of Euclidean

space) between two vectors. This adds additional structure to a given vector space. The inner
product defines a norm, although not every norm can be defined by an inner product.
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Vector Spaces, Hilbert Spaces, and Key Notions

or Sp and Inner Products

@ Givenuyv cE

orthogonal

@ Orthogonal projection

? —
axh

y=1(23)
P.(y

(3)

s (u,vy=0
),
]
l=€.}'..\>r=£r=r£ £
Bel® = 177 \17717)
x=(4,1)
1 [l 1 I
5 6 7 v,
7134

Inner product is also used to define orthogonality and for projecting one vector onto another
vector. A set of vectors is called orthogonal if the vectors are pair wise orthogonal. If they are
normalized to unit norm the vectors form an orthonormal system.

Vector Spaces, Hilbert Spaces, and Key Notions

Hilbert Space

Space

then E is complete

sum or finite energy

W=

- )

@ Vector space E with inner product is called Inner Product
@ If every Cauchy sequence in E, converges to a vector in E,

@ A complete inner product space is called a Hilbert Space

@ e.g. Space of Square-Summable Sequences - Hilbert
Space k(Z) ,space of sequences x[n] having finite square

<x._1') = Z x [n]y[n]

nyfl
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= f_zzlx[u]:l
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The question of completeness of a space deals with the question, whether the span of a set of
vectors covers the whole space or not. In other words this means that every vector in the space

can be represented as a linear combination of the

basis vectors. A Cauchy sequence of vectors

is a sequence where the distance between its elements eventually becomes arbitrarily small

(the sequence converges).
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d Inner P
Vector Spaces, Hilbert Spaces, and Key Notions
Orthonormal and General Bases
Elements of Linear Algebra

Orthonormal Bases

@ A setof vectors S = {x;} is said to be an orthonormal
basis if
e all x; are orthogonal
@ all x; are normalized to unit length
@ Sis complete

@ Orthonormal system {x;} is called orthonormal basis of E,
if for every y in E,
Y = >k kX ,Where
ax = (Xk, ¥)
coefficients of expansion are called Fourier coefficients

@ Approximation is optimal in least-squares sense ol
TUG
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Among all possible bases in a Hilbert space, orthonormal bases play a very important role.
Every arbitrary basis can be orthogonalized by a procedure from linear algebra, called Gram-
Schmidt Orthogonalization. If we have an orthonormal basis to a vector space E, then every
vector can be represented by a linear combination of the basis vectors, where the coefficients
are the projection coefficients of the vector onto each basis vector and are called Fourier
coefficients. If we are trying to approximate a vector from a higher-dimensional Hilbert space
E by a vector lying in a subspace S of E, the orthogonal projection onto S yields an
approximation that is optimal in the least-squares sense.

nd Inner P
Vector Spaces, Hilbert Spaces, and Key Notions

e

General Bases

bra

General Bases

@ Orthonormal bases are very convenient, but
nonorthogonal or biorthogonal bases are important as well

e {x;,x/} constitutes a pair of biorthogonal bases iff
<x;,x;> — §[i —j]forallijinZ
Signal expansion formula becomes
Y =2k X ¥) X = ok (X V) Xk

@ Overcomplete Expansions

e Signals as linear combination of an overcomplete set of
vectors - no longer lin. ind.

e expansion is not unique anymore wh

10/34
The term biorthogonal is used since to the (nonorthogonal) basis corresponds a dual basis
which satisfies the biorthogonality constraint. If the basis is orthogonal, then it is its own dual.
Overcomplete expansions are the starting point when talking about frames.
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Vector Spaces, Hilbert Spaces, and Key Notions

Eigenvectors, Eigenvalues

roots of characteristic polynomial D(x) = det(xI-A) of matrix
A are called eigenvalues
avector p # 0 is called eigenvector if
Ap = Ap

if nxn matrix has n lin. ind. eigenvectors it can be
diagonalized

A= TAT-1
importance of eigenvectors in study of linear operators
comes from the following fact

assuming vector x = > a;V;

dxe A(Za,_u] - Yo (4) =Xt (4n)

L

TUG
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Every Matrix can be seen as a linear operator representing a system. If a vector, which is fed
to the system, is only scaled, then this vector is called an eigenvector of the system. The
corresponding scaling factor is called an eigenvalue of the system. The concept of
eigenvectors generalizes to eigenfunctions for continous operators. A classic example is the

complex sinusoid.

Vector Spaces, Hilbert Spaces, and Key Notions

Special Matrices (1)

b

TUG
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Many matrices exist that have a special structure. Polynomial matrices are often used in
Signal Processing, because a FIR filter system can be represented by a polynomial. Also IIR
filter systems can be represented by matrices of rationals.
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nd Inner Pro
Vector Spaces, Hilbart Spaces, and Key Notions

Special Matrices (2)

@ An example for a matrix with toeplitz structure is the
autocorrelation matrix
AN (U I I N )
R = r =1 »‘;u[l:}] 1]
B I ] I (V) I ()

where ryx [m| = E {x [n] x [n + m|}

nd Inner Products
Vector Spaces, Hilbert Spaces, and Key Notions
d General Bases

Elements of Linear Algebra

What we’ve done so far...

@ ... Inner Product

@ ... Hilbert Space

@ ... Projection

@ ... Orthonormal and general bases

@ ... Eigenvectors and Eigenvalues

TUG
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ors of Fourier Transforms (1)

Fourier Theary and Sampling rs of Fourier Transforms (1)

General Signal Expansions and Nomenclature

@ Continous-time integral expansion (e.g. CTFT)
)= J-_‘!.-Q'I'mI;T:ILfc'?} with ¥, = <‘i‘m{f], af f:}>
@ Continous-time series expansion (e.g. CTFS)
X(H)=Y XV (1) withX, = (‘i‘;t__r"r_ xt__r"r>
@ Discrete-time integral expansion (e.g. DTFT)
x(r) = j_‘f&‘Pﬂ [n]de  with X, = <'i’a []. .1‘[1?]>
@ Discrete-time series expansion (e.g. DTFS)

TuG

e Z_‘L'J.‘I’I.[n] with ¥, = {‘f’,[ﬂ]‘r[n]} yh

15/34

As mentioned before the inner product is used to project one vector onto another. Each
expansion is just the projection (using an inner product) of the input onto a corresponding
basis. Depending on the type of basis functions and the input, e.g. whether they are
continuous or discrete, different types of signal expansions are used. Be aware of the usage of
biorthogonal bases in the above equations.
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Various Flavors of Fourler Transforms (1)

Fourlar Theory and Sampling Flan Fourler Transforms (1)

Continous-time Fourier Transform

@ Fourier analysis formula

F{a}) = j f (I)(?_"Wdf = (c’ﬂw.f(f))

@ Fourier synthesis formula

S(t)= % I F{m}e""‘”dm

s

TUG
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Given an absolutely integrable function f(t), the Fourier analysis and synthesis formulas are
defined like above. The factor 1/(2m) in the synthesis formula comes from the usage of ® and
can be easily explained when using the frequency f and making a variable substitution. The
continuous-time Fourier transform is a projection, using an inner product, onto complex
sinusoids used as a basis.

Various Flavors of Fourler Transforms (1)

Fourler Theary and Sampling Fourler Transforms (l1)

Properties of Fourier Transform (1)

@ Linearity
a flr+ fglt) & oF(o)+ fGla)
@ Shifting
flt—t,) & e ™ F(w)
(1) > F(o-ao,)
@ Scaling
o 1 [
flat) & —F|—|
|(..'| L d
@ Differentiation / Integration
2"f(t) ST TS F(o)
o < [ jo) Flo) _Lft,rrdz‘ < o TUG
17734

The Fourier transform satisfies a number of properties, some of which are shown above.
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avors of Fourier Transforms (1)

Fourier Theary and Sampling of Fourier Transforms (I1)

Properties of Fourier Transform (2)

@ Convolution of two functions
0= [ f(o)glt—2)dr=1()*g(n)

@ Convolution theorem
f()Y*e(@) < F(o)G(w)

@ Complex exponentials are eigenfunctions of the
convolution operator

J'ejw{z—r}g(r)dr _ ejczr’.'e—jmg(r\)dr _ 8_}-&;(}(0),)

- TUG
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As mentioned earlier some operations in one domain have simpler equivalents in the other
domain.

Various Flavors of Fourier Transforms (1)
Samplin
Fourler Theory and Sampling s of Fourier Transforms (11}

Properties of Fourier Transform (3)

@ Because the Fourier Transform is an orthogonal transform,
it satisfies an energy conservation relation known as
Parseval’s Formula

j F(Hg(hdr = L | F'(@)G(@)dw
- 27

—m

when g(t) = f{t),

J. ‘f{'f)la dt = % J |F(f:‘1')|2 da

TUG
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Various Flavors of Fourier Transforms (1)

Fourler Theory and Sampling of Fourier Transforms (11}

Fourier Series

@ Given a periodic function f(t) with period T,

f(t+T)=1(1)
@ Synthesis Formula

S()y= Z FlkE*™. where o, = 2T—jr
F—,

@ Analysis Formula

I
» _ i: d -}—ﬂ:rrhf
Fk] = Tj;j(_r)c dr
_E #TUG

Fourier series, beside their obvious use for characterizing periodic signals, are useful for
problems of finite size through periodizitation. A problem which then occurs is the
introduction of discontinuities at the boundary, since in general, periodizitation of a
continuous signal on an interval results in a discontinuous periodic signal.

Fourier Theory and Sampling

Dirac Function

e Defined as a limit of rectangular functions

@ Infinitesimally narrow, infinitely tall, yet it integrates to unity
@ Some relations

= [smdi=1

= [ U=t =[ F(OS+1,)dt = £(1,)
= f(O*o(t—-t,)=f(t—t,)
=0(1=1)) « ¢’

wh

TUG
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More generally, any smooth function can be used to define the Dirac delta. While the Dirac
delta function in the continuous domain has to be treated with care, its equivalent, the discrete

Dirac delta impulse is simply defined to be a one at time instant zero, and zero otherwise, in
the discrete domain.
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Fourler Theory and Sampling

Impulse Train

@ Train of Dirac functions spaced T > 0 apart, given by

[{#]

sp(t) = D S(t—nT)

M=—0
@ Fourier Transform of impulse train

2??47&

S{a)y = = Z S(w

The impulse train is a very important tool in sampling theory.

Fourier Theory and Sampling

Sampling

@ Central to discrete-time signal processing, since it provides
link to continous-time domain

@ Call fr(t) the sampled version of f(t), obtained as,

ol
0 = f sty = > f(nl) 8(t—nT)

a=-00

@ And the Fourier Transform of the sampled time signal is,

)= g E (a2

Fw) = F{:a:}*% z t‘l‘ m—.&

k=00

o

TUG
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Sampling the spectrum and periodizing the time-domain function are equivalent. The same
holds for the dual situation, where sampling the time-domain function leads to a periodized
spectrum.

A sampled signal can also be seen as a continuous signal multiplied by the above defined
impulse train. In the frequency domain this multiplication results in a convolution. Therefore
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the spectrum of the sampled signal is the periodized version of the spectrum of the continuous

signal. The copies of the spectrum are spaced 2_|_—7[ apart.

Fourier Theory and Sampling

Sampling Theorem

e If f(t) is continous and bandlimited to w,,, then f(t) is
uniquely defined by its samples taken at twice wm. The
minimum sampling frequency is ws = 2wm.

f(t) can be recovered by the following interpolation formula

() = Z f(nT) sme,(t—nl")

R

TUG
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The famous theorem by Whitaker, Kotelnikov and Shannon states that a bandlimited signal
can be completely reconstructed if the sampling frequency is twice the maximal signal
frequency. Note that the sinc — function has the interpolation property since it is 1 at the origin
but 0 at nonzero multiples of T.

Various Flavors of Fourier Transforms (1)
Sampling

Fourler Theary and Sampiing of Fourier Transforms (11)

Alternative view on sampling

@ Sinc-functions form an orthonormal system

@ Standard sampling system (including anti-aliasing prefilter)
may be interpreted as an orthogonal projection of
not-necessarily band-limited input signals onto the space
of band-limited signals

@ Different interpretation of reconstruction formula

ey = > F(nT) sine(t/T —n)

ned

@ Due to the orthogonality the projection into the space of
bandlimited signals yields the minimum-error

approximation b

25/34
An alternative interpretation of the sampling theorem is as a series expansion on an
orthonormal basis for bandlimited signals. Another way of writing the interpolation formula is

o0

ft)= Z <¢n,T  f >¢n,T

N=—o0
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where, @, ; :%sincT (t—nT) form an orthonormal basis for the space of bandlimited

functions.
s of Fourier Transforms (1)

Fourier Theory and Sampiing Various Flavors of Fourier Transforms (11}

Discrete Fourier Transform (1)

@ Very important for computational reasons - can be
implemented using the FFT

@ The DFT consists of inner products of the input signal f
with sampled complex sinusoids

@ Analysis formula
N-1 ) N-1
FIk] = 3 Flnle 275 = 3" fln W
n=0 n=0

@ Synthesis formula

) l N1
flnl = =S Flklw,™
N E ’ ﬂTUG
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There is a close relationship between the DTFT and the DFT. The DFT can be thought of as
the transform of one period of a periodic signal, or a sampling of the DTFT of a finite-length

signal. In contrary to a DTFT fn] and F[k] are not defined for n,k ¢{0,...,N -1} in the case
of a DFT.

rs of Fourier Transforms (I}
pli

Fourier Theory and Sampling ous Flavors of Fourier Transforms (1)

Discrete Fourier Transform (2)

@ Can be thought of as the transform of one period of a
periodic signal, or a sampling of the DTFT of a finite signal

e The DTFT is a function of continous frequency whereas
the DFT is a function of discrete frequency

@ DFT can also be formulated as a complex matrix multiply

N—-1
Xlww) 2 zz) 2 Y 2(m)e PN, k—0,1,2,. N -1

n=0

Xiwo) 50(0) soll) - s(N-1) z(0)

X(L,-l;u s1(0) s1(1) s1(N—1) z(1)

Afwa) 52(0) 52(1) sa( N —1) z(2)

Xlww-1) sv-100) sy—1(1) - sy—1(N—1) (N —-1)
—_— —_——
X * x
- Sk #TUG
27134

Because of the finite-length signals involved the DFT can be represented as a matrix-vector
product.
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Frequency, Scale and Resolution

Time-Frequency Representations

Frequency, Scale and Resolution (1)

but practical applications require basic m

@ "Localization” of the analysis is needed
the transform

accuracy

principle

@ Fourier transform and it’s variations are very useful tools,

odifications

@ not necessary to have the signal over (—oc, oc) to perform

o local effects (transients) can be captured with some

@ Important concept in this context is the uncertainty

L

TUG

Fourier analysis is not always the best tool to analyze a signal whose characteristics vary with
time. If, for example, a signal composed of two sinusoids with different frequencies and a
glitch at time instant t, is fourier transformed the glitch causes a wide spread of frequency
components and is therefore not efficiently described. Another simple example would be a
time-domain signal consisting of one period of a sine — the sine is rectangulary windowed.
Fourier theory says that a rectangular window results in a sinc — like frequency spreading. So

more localized transforms are needed.

Time-Frequency Representations

Frequency, Scale and Resolution (2)

@ Various ways to define the localization of

function in time and frequency
B, —: PP,

Q\’//////%

IF () b,

a particular basis

function, but they are all related to the “spread™ of the

t

ViR

frequency localization of f(t). Intervals I; and [, conta
the time- and frequency-domain functions, respectively.

Figure 2.9 Tile in the time-frequency plane as an approximation of the time-

in 90% of the energy of

L

TUG

To define localization of a particular basis one can define intervals I; and I, which contain

90% of the energy of the time- and frequency-domain functions, respectively, and are

centered around the center of gravity of | f (t)|2 and |F (a))|2 . This defines what is called a tile

in the time-frequency domain.
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Time-Frequency Representations

Frequency, Scale and Resolution (3)

@ Basic operations: shifting, modulation, scaling

w

g - [ ;"‘}0 i
|70 U v
o * T o b S o !
(a) ®)

Figure 2.10 Elementary operations on a basis function f and effect on the

time-frequency tile. (a) Shift in time by  producing f' and modulation by wo

producing f”. (b) Scaling f'(t) = f(at) (a = 1/3 is shown). #
TUG
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Modulation by

e’ or a shift by 1 simply result in a translation of the tile in the

corresponding direction. Scaling by a, or f'(t)= f(at), results in I'(t)=l|(t) and
a

I'(w) = al () . Therefore scaling affects both the shape and the localization. In the case of
scaling as shown in the slide above resolution in time was traded for resolution in frequency.

ague nd Resolution
Uncertainty Principle
S elet Transform

Time-Frequency Representations

Uncertainty Principle

@ Sharpness (resolution) of time analysis can be traded off for
sharpness in frequency, and vice versa
@ Measure for width in time and frequency

A= [elrof di

i

Al = I [’.{J:‘F((ﬂ)lz dt

—an

@ [f the waveform is well-localized in both frequency and time, then
the time-bandwidth product A A will be small
@ Uncertainty Principle

If (1) is differentiable and vanishes faster than ﬁ as f — 4o,
v

! TUG

|
AN =— yhh
C 2
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There is no way

to get an arbitrarily sharp resolution in both domains simultaneously and the

uncertainty principle gives a lower bound that can not be passed. If a waveform is well-

Lessiak Andreas
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localized in time it will have a small A, and if it is well-localized in frequency it will have a
small A .

Time-Frequency Representations

Short-Time Fourier Transform and Wavelet Transform

(1)

STET Wavelet Transform

@ Basis function usually is a
bandpass filter that is
shifted and scaled

@ “local” Fourier transform

SIFL (w.0)= | W't—0)f (t)e *™dt

v 1 =B,
STFT,(.7)= (g, (1. /() CWTy(a.b) _ﬁiw[ a }' (O)at
where g, (1) =w(t—r)e’ CIT (@.b) = (¥, (1). /(1)
ﬂTUG
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To achieve a “local” Fourier transform, one can define a windowed Fourier transform. The
signal is first multiplied by a window function w(t-t) (e.g. Hamming, Hanning, Gaussian,...)
and then the usual Fourier transform is taken. That is, one measures the similarity between the
signal and shifts and modulates of an elementary window. The spectrogram is the energy
distribution associated with the STFT.

Instead of shifts and modulates one can choose shifts and scales of a prototype function (e.g.
bandpass filter with zero mean and certain impulse response) and obtain a constant relative
bandwidth analysis known as wavelet transform.

Uncertainty Princig

amty Cip
STFT and Wavelet Transform
Time-Frequency Representations

Short-Time Fourier Transform and Wavelet Transform

(2)

(€} (d}

Figure 2,12 The short-time Fourier and wavelet transforms. (a) Modulates #
and shifts of a Gaussian window used in the expansion. (b) Tiling of the time- TUG
frequency plane. (¢) Shifts and scalee of the prototype bandpass wavelet. (d)
Tiling of the time-frequency plane.

3/34
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L inty Principle
STFT and Wavelet Transform

Time-Frequency Representations Caonclusion

Conclusion

@ |Inner product is used to project one vector onto another

@ Every signal expansion can be seen as a projection onto a
Hilbert Space

@ Problem with Fourier transform - no localization in time

@ Modifications aim at "localizing” the analysis

Not possible to become a arbitrarly sharp resolution in both
domains simultaneously

TUG
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