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1) We introduce the concept of orthogonality, orthonormality, and biorthogonality.

2) We investigate two orhtonormal series expansions in detail. The Haar iexpaith
maximal time resolution and the Sinc expansion with maxi

3) Analyses of the filter banks in 3 different domains are given. We show timarom
modulation domain, and polyphase domain (and their relatio

4) Finally we compare the results on filter banks and series expansions.
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Orthonormal Expansions

* Sequence z|n|is square-summable z[n] € 12(2)

« Expansion w[n] = > (er[l], z[)pr[n] = D X[k]pr[n]
kezZ kez=z
« Transform X [k] = (¢r (1], z[1]) = D _ o5 [l=[l]
{

* Orthonormality (pr[n], ¢i[n]) = o[k — ]

. Conservation of energy ||z]|* = || X||?

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Any square summable sequence x[n] can be written as a series expansiongpyhgre {
are sets of orthogonal basis functions and are complete in the space of squaablsum
sequences(2).

X[K] is called thetransform of x[n]. An example for a orthogonal (not orthonormal)
expansion is the discrete- time Fourier transform (DFT). To be orthonormaidtse b
function must satisfy the orthonormality constraint, (orthogonal and norrdabze
unity).

An improtant property for orthonormal expansions is the conservation of energy.




Advanced Signal Processing Seminar " Grazm

Orthogonal: Example
) ©0 oy ( 1 )
ammmET Y
1 !

D (15
| — =105

0 —
0.5
Xo - po = ( 1 )
Xy
1 1
X1-p1 =
Y1 1°¢1 ( _05 )
-1 0 1 2
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An example for an orhogonal expansion. Note that this expansion is not orhtonormal,
since the scalar product ops 9,> = 5 and 9,, ¢,> = 5 are not normalized to 1.

The transforms XO is obtained by projecting x on the vegjorhe reconstruction is
obtained by projecting x op, which yields X[0] = <p,, X>/|po|| = 0.5 since ¢, x>=2.5
and |pol|= <po, 9> = 5.
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Biorthogonal Expansion

« Expansion  x[n] = Y (el 2l])peln] = > X[k|@xn]

kezZ keZ
= STl el = 3 X[kl
keZ keZ

o Transform  X[k] = (gr[l]. 2[l]) and X[k] = (@x[l]. z[1])

« Conservation of energy ||z[|* = (X[k], X[k])

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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In biorthogonal expansions we have a dual basis withn} and {¢'[n]} where t
denotes tilde. These dual bases are used to obtain the transformyih aind
reconstruct the signal x[n] withp{[n]}, or vice versa.
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Biorthogonal: Example
¥0

2 / o=

p1

-1 0 1 2
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Biorthogonal: Example
¥0

2 / o= (1)
)

¥0 ¥1

-1 0 1 2
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Biorthogonal: Example

Y0

2 /
<, B> = 6(k—1)
Y0 Y1
1
< 0,0 > =1
<¢0,p1> =0
0 ~
<¢1,90>=0
<ep1,p1> =1
1 —
Y1
-1 0 1 2
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Biorthogonal: Example

Y0

p1

-1

1

2

<R @ > =0k 1)

<o, o> =1

< po,p1 > =0

<¢1,00> =0

<p1,01> =1
wn(2) =)
oo() w=(4)

. Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks
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Biorthogonal: Example Reconstruction

Y0
2
/ _ (o
- *=\os
, YO Y1
x[n| = Z X [Kpr[n]
kez
0 K] = (elt] 2 [1])
4 eln] = Y X[k]@r[n]
@1 keZ
1 1 > X{’H = {¥k m flm>
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Biorthogonal: Example Reconstruction

Y0
2
/ o= (
_ = ~—\ 05
@o| ©.5¢0)/ |1
1 ~——
- x[n| = Z X [k|pr[n]
keZ
==L\ X[k] = (@l all])
< x,$g > = 0.5))
=+
- 1 X[1]=-0.5
-1 1 2
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Biorthogonal: Example Reconstruction

©0

2 / 0

= = ( 0.5 >
. ¥0 ¥1

- wn] = " X[klpxln]
kez
0 X[k] = (@nll] 2[1])
X[0] = 0.5
1 ¢1| X[1] =-0.5
-1 1 2
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Biorthogonal: Example Reconstruction

Y0
2
/ _( o
- *=\os
, YO Y1
. 2] = " X [klpeln]
keZ
. X[E] = (@xll], afl])
[0] = 0.5
' 3, X[1]=-05
-1 1 2
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Biorthogonal: Example Reconstruction
¥0

2 / _ (o
| |¥0 /901 ( >

0
1 @1| X[1] =-05
-1 1 2
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Haar Expansion

e Basis functions

L =2k 2k 1 vz T A
e e \/z n -0 ’ e b — —L — 9 i
eokl) { 0 otherwise, Peiiln) vz _k.+ L
0 otherwise.

» Time-varying periodic

worn] = woln — 2k],  @ari1[n] = ¢1[n — 2k]

+ Transform Xt — (o) = 5 (al2t] s ai2t 1))

1
X[2k+1] = (popy1,2) = 7 (1:[2/%] — r[2k + 1})
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks \
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One basis function spanns a subspace that is the coarse or average vefsjandf x
the other the difference or added detail. This corresponds to a low and highpass
characteristic, but with very poor frequency resolution.

A very important property of the transform is the time-varyingqucity. The even

indexed basis functions are translated of each others, and so are the odd indexed ones.

17
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Haar Expansion & Filterbanks

, L n=0
- 1 vz e
 Filter D v R it U N A SR S S
ol 0 otherwise, haln vz " 1
’ 0 otherwise.
ho[n] * «[n] = hol2k — l]a[l] = iaz[fzk} + iaz[fzk +1] = X[2k]
n=2k ez \/5 \/5

hi[n] * 2[n] o = gg: hi 2k — l]l] = %az[?k} - %az[?k +1] = X[2k + 1]

Filters hy[n] and h,[n] followed by downsampling by 2
implement ¥0 and ¥1

ho[n] = @ol—n], h1[n] = @1[—n]

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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We can implement the orthonormal basis functions with FIR filter. Natethese
filters are acausal.

The result, that the filter are time- reversed versions of the fugiBon is intuitive,
since filtering, i.e., convolving is the scalar product with the timeensad filter
coefficients.
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Time-Domain Analysis

eo[n]
: : ho[0)ho[—1] :
hy|0Jhy[—1 .

ol X[o 071 0
ylO | X[ ealn) z[1]
yoll] X[2] o [n] x[2]
1] X[3] ho[0]ho[—1] z[3]

. ) hl[(]}hl[fl} .

N
#1[n]
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Matrix notation.
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Reconstruction
e Filter 4o [T?»] = {0 [?’1]?91 M = @1[72}

e Periodic w2kl = goln — 2k], par1[n] = gin — 2]

xn| = Z X[k n]
keZ
= Y X[2K|eauln] + Y X[2k + Uspoyr[n]
keZ keZ
= Z yolk]goln — 2k] + Z y1lk]gi[n — 2k
kez keZ

Upsampling by 2 followed by convolution with g;

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Each sample ofjk] adds one sample of[g] shifted by 2k. That can be implemented
by an upsampling by 2 (inserting a zero between evry second samgld)of y

20
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Filterbank
> holm) ‘@ ol ‘@ " golm]
x[n] = yln]
» hy[m] —@ yl[n]’@ " gilm]

« Synthesis Filter 9; [n] = ¢;[n]

o Analysis Filter  h; [n] = 901'[—”]

. Stefan Mendel & Franz Zotter 22.5. 2007

Discrete-Time Bases and Filter Banks

The final result- a two channel filter bank.

21
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Filterbank

yolk] = X[2k] = Js[2k] + J5x[2k +1]

OO

x[n] — y[n|

ﬁ
Si-
Si-

NI

1 1 ¢ ¢ 1 1
[_\/5 \/5] _’@ '@ [\/5 _\/5]
1 1
yilk] = X[2k + 1] = —5z[2k] — J5a[2k + 1]
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Expansion Example — Analysis Filter

x[n]

1= T . : A hgin]

=
£ o
=
= -1 : - B - - - H —
L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50
n
I
1 : s T : : —0 x[n]*hw[n]
(=
£ gle?2®90e 0009999900, 0009999900,
= - o586 8606°° °°o688585606°° ©
< -1 : - PR - - - H H —
I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
n
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23

We can see the average (middle) and the coarse (bottom) informatm@imptit signal
(top).
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Haar Example - Downsampling

i
05—
S o
x
sk
s
5 | | I I | | I |
] 5 10 15 20 26 30 35 10 I3 50
15
i
. 05 B
S
S a
> 05— —
b N
15 | i I
5 10 15 20 5
n
15
. s N
c ?..0 0.9 .92 . 9 9.2 .9 ¢
= o e ° ° ° ° -
= 6 88 e LA I T B
05| -
b N
15 | I I |

n
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Downsampling by 2: Every second sample is taken — only 25 instead of 50 samples.

24
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Filterbank

yolk] = X[2k] = Js[2k] + J5x[2k +1]

\
NeR i pa

e
x[n]—> |
- H OO

yi1lk] = X[2k + 1] = o[2k] — w2k + 1]

1.

y[n

. Stefan Mendel & Franz Zotter 22.5. 2007

Discrete-Time Bases and Filter Banks
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Haar Example - Upsampling

i
05— H
Z o :
= :
o5 :
ab :
~is | | | | 1 | | | |
0 5 10 1 20 25 30 35 40 45 50
n
! T
05— 5 B
=
2 o .
S
o5 J
e J
o | | | | | | I i i
0 5 10 15 20 25 30 35 40 45 50
15 T
. o5 i —
S eefe? ePe%e%0e0 ce2efeRe®
~ 0oe eV eee 903,90, 04000 000 ® LN 4 ® 0400090 00 07000
= sraTETe TTTetetsrenents 1
e ; J
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0 5 10 15 20 25 30 35 40 45 50
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Upsampling by 2: Inserting yeros,

i.e., every second sample is zero.

26
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Filterbank
21[2k] = z1[2k + 1] = J2[2k] + z[2k + 1]

yolk] = X[2k] = %z[2k] + %w[ﬂc +1]

5 yo[n]

x[n] — y[n|

OO

vilk] = X[2k + 1] = J5ol2K] — Jsz(2k + 1] i i

x1[2k] = Sx[2k] — dz[2k + 1

ﬁ
Si-
N

NI

<
<o

212k + 1] = —32[2k] + Sx[2k + 1]

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks \
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The impulse response of geproduces a scaled (by 1/sqrt(2)) version of the input
sample (since the second sample is zero), whergasduces the same output, but once
time -1.
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Filterbank

e1[2k + 1] € Lo[2k] + éx[z@

sl OO
x[n]—> Wi ylnl
i ® T

UL
@k] = La[2k] — La[2k 4 13 'S

212k + 1] = —32[2k] + Sx[2k + 1]

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks \
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Even samples y[2K] =2K] + x;[2K] = (Y2 X[2K] + Y2 x[2k+1]) + (Y2 X[2K] - ¥2 X[2k+1])
= X[2K].

28
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Filterbank

21[2k + 1] = La[2k] + &[2@

O [y
x[n]—> %—y[n]

OO

x1[2k] = x[2k] — 2x[2k + 1]15

T1[2k + 1] = —3a[2k] + %x[Q@

. Stefan Mendel & Franz Zotter 22.5. 2007 Ilter Banks \
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r1[2K]

ﬁ
Si-
Si-

NI

[
S
S

Odd samples y[2k+1] =2k+1] + x[2k+1] = (%2 X[2K] + Y2 X[2k+1]) + (-Y2 X[2K] + Y2
X[2k+1]) = x[2k+1].

29
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Haar Example — Synthesis Filter

%_?..TT]i””n“““u“oo””nTT"ul““_l.:z[n] }

25 30

L
45 50
n
1 ‘ . 3 . I . ‘ — upsa{mpled y1[n],
= — XNl
S oreel8800o0Rsiglateceselfjeioecnelelstote0sggu—~
- . . : : f— a o : : :
\ I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
n
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks

Synthesis filter: gn] =

ooln] = ( 1/sqrt(2) 1/sqrt(2) ). That means that for a delta
impulse we have the responggn], which is a scaled reproduction of the sample
For g[n] =

o4[n] = (1/sqrt(2) -1/sqrt(2) ).

30
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Haar Example - Reconstruction

Xoodl |
1+ 20 - - . rect - g
AN s ol
/ \ ? \ —o X,In]
05 A1} \ - : : S
/
0
‘ \
-0.5 : / &L
\
\/ W/
-1L Lo/ ~
0 10 20 30 40 50
n
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Sinc Expansion

[X(er)|

[ .
@ " “
(b) E—_— e
(c) p—_— —_—
(e) - Ihme SRS | By e

goln] = 5= 2)  giln] = £(-1)"go[-n + 1]
A X))
()
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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On the left side we see the projection of the input signal x[n] onto the suladpace
sequences bandlimited tarf2 +r/2] (i.e. lowpass) shown in black.

On the right side we see the orthogonal counterpart (highpass).

32
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Orthogonal Expansions - Summary
. Synthesis filter g;[n] = ¢;[n]
« Analysis filter h;[n] = g;[—n] = p;[—n]
» Expansions are periodically time- varying

* Haar expansion
— Good time resolution

* Sinc expansion
— Good frequency resolution

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Time Domain

Yo[n] .
To|n
ho[n] @ @ go[n] o)
zln] — i i[n]
i) @ C)—{ ol |-
a1 [n]
* Analysis: ypln] = z[n] x hy[n] = < a[n], hyl-n] >
= hp[—n] = @[n], i.e. non-causal filter
» Synthesis: Z[bN +n] = S [IN]-gp[mN—bN +n]
(from decimate-d Vi) v e kgo ngn /N Yk Gl = "
= gklnl = ¢klnl
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks

Like in the previous section, but now for the general case, we want to provide an
example of a time domain filter bank implementation. In the implemientadur signal
decomposition is performed with digital filterg[h] and g[n]. The figure shows a 2
channel example of such a time domain filter bank.

We can now link the mathematical expression of a convolution to the expressite for
scalar product, and observe that the base vector of the analysis must tinsedeve
within a convolutive formulation. On the other hand, for the synthesis task, we
recognize that within the decimation time step N, the base vectotsdaesynthesis are
involved without time reversal.

Systems involving decimation (only) represent time varying systeerge the analysis
step is time varying too. We can call it ,periodically time-vanyf, as only for time
instants of the original sampling rate that are multiples nN, the désths&gnal is time-
invariant. l.e. y[nN+m]=x[nN+m] only for m equals N.

35
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Analysis of Filter Banks: Time Domain

yo[n]

Toln
pab =@ ——E)—{ b 1"
yiln
hi[n] @ @) giln] 7
Y i1[n]
» Synthesis/analysis: decimated, interlaced channels:
Analysis: X =T, -x Synthesis: y =Ts X
5o[0) [0] (0] 5o[O]
nlo] | _p | =] 1| _ g | wilo)
Yo[2] * ] z[2] z[2] > | yol2]
91.[2] UC[.3] 5[.3] yl.[2]
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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We obtain a compact matrix notation when interlacing the filter bamknbls
corresponding to one time instant. The analysis matrix operates on the coniimpaoitis
signal x[n] at full sampling rate, and yields the decimated filter bdrdnnels (att.:

chose the notation forjm] without decimation, i.e. m=Nn, in contrast to notation in the
previous section). Of course, this system again is periodically time-variant
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Analysis of Filter Banks: Time Domain

» Decimated, interlaced: Analysis

ho:[O] ho[:fl] ho[;2] ho lsz] O 0

0 [ 0 o0
Y1 [O] — e 0 hl[O] hl[—].] h1 [—2] e h1 [1 - L] 0 0 0 Z[l]
yo[2] ... 0 0 0 hol0] ... ho[3—L] ho[2—L] ho[l—-L] O z[2]
y1[2] 0 0 0 hi[0] ... m[3—L] hi[2—-L] m[1-L] O z[3]
: : : : : : - : : : :
» Synthesis: T
S N T B ,
T o0 gi[0] 0 0 TN
5 [:O] go [;] g1 [;] 00 00 yo:[O]
@E _ go:[ ] 91:[ | go:[ ] 91.[ ] yl{g}
H L-1 qll-1 g[L-3] afL-3] .| [P
23] e B B G A e Bl B E1C
: 0 0 golL —1] gi[L —1] :
0 0
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Time Domain

» Decimated, interlaced: Analysis

. 1ol .
... 0 [Folo] Tol-1] Fol—2] .. mlL_ZI[] O 0 0...) [ o]
41]0] _ ... 0 hl[O] hl[—l] h [—2] ... hy[1—L 0 0 0 ... Z[l]
2| — 0 0 0 |LholO] ... ho[3—L] hg[2—L] hg[l—LJ]| O... z[2]
12| 0 0 0 hilO] ... hi[3—L| hi[2—L| hi[1—-L|| O ... z[3]
y Ta x
« Synthesis: [ voln]|| ¢1[n] T,
. c O o o 0 y
: go}(ﬂ g1 %(1){ 8 8 TN
.t go 91 e [——
2 gol2 || o2 |[wor ][ el | -
#[2] = : : : : e
i golL — 11| |ga[L — 11| |golL — 3] |a[L — 3] ... y
23] o o [golz — 2| |aafr - 2| oo | {22
0 0 golL —1]] |g1[L — 1]
0 0 U V)
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Expanding the analysis and synthesis matrices, Ta and Ts, respectivelyaindiuit

above expressions.

For illustration, we can now highlight the corresponding base vectors conriedtesl

filter responses. The non-causal analysis filters involve the timerse base vectors.

38
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Analysis of Filter Banks: Time Domain

» Perfect reconstruction: TsTa=1
(Biorthogonality)
0 [Baf0] hol-1] ho[-2] .. hA-I11] © 0 0...
0 [halO] _hal=11 hi[-21 ... hi[1—1L 0 0 0...
0 © 0 hol0] oo holB3—L] hg2 =L RolI—L[] O ... |*
0 o0 0 Ri[0] [ M3 —L| h1|2 L] Al —L|| O ...
0 0 0 0
90(0] g110] 0 0
90[1] g1[1] 0 0
go[2] a1[2] 9o[0] g1[0]
: : : : =1
go[L — 11| |g1[L — 1]} | go[L — 3]| | 91[L — 3]
) 0 go[L —2]| |g1[L — 2]
0 0 golL —1]] |g1[L — 1]
0 0 U )
e Orthonormality: ' ‘
— Analysis filters are time reversed synthesis filters
Ta=TJI, ie. hyln] = gp[-nl, and TITs =1
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Connecting the synthesis and analysis matrix, we can now desire pedenstruction,
i.e. a unity transfer function from x[n] to ~x[n]. In particular, this medrat each scalar
product involving vectors,m] and g[n] having different indicesAk and involving
shifted versions has to yield 0 (=orthogonality). Furthermore, filtekbavith perfect
reconstruction are then time-invariant systems again, as tims ahtfte input x[n+m]
always yield a time-shifted output “x[n+m]. We most often call this prypgdias free
reconstruction®.

Like in the first two sections of this talk, orthonormal systems involve theedzase
vectors for analysis, as well as synthesis. Therefore, in our filter mmgsiation, the
analysis vector must be equal to the time-reversed synthesis.filtersnay then
express the orthonormality as a special case of perfect reconstruction
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Analysis of Filter Banks: Modulation Domain
» Aliased spectra by modulation: A decimation by 2 example

original

modulated

eI g[n] = (51)" - z[n] < X(52)

aliased

(X (2) + X(—2)]
AR akRay RN Aan hlla halaay
AR )

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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For frequency domain representations of decimated filter banks, we have to o som
tricky manipulation, in order to provide sufficient description of ,aliasing, time-
variance. A straight-forward way is to build the aliased spectrumradaddrom

downsampling and expansion by modulation and sum of the original signal spectrum.

Mind the re-normalization term deviding by the number of modulated spéldtia
normalization is necessary, as downsampling and upsampling scalegidleesergy.

The above Figure shows an example for down- and upsampling by a factor 2.

40
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Analysis of Filter Banks: Modulation Domain

» Aliased spectra by modulation: A decimation by 2 example
— Replacing decimation and upsampling by modulation

OO ¢ —{Fo-d

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Modulation Domain

» Aliased spectra by modulation: A decimation by 2 example
— Replacing decimation and upsampling by modulation
— Employing modulated versions of the filter

OO ¢ —{Fo-d

( _ 1 ) n
LH(2)
1
H(—2)~D5
( _ 1 )n
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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We can now employ this approach into our block diagrams. It is furhtermosgy®s
now, to use modulated versions of the filter, because Y)&X(W" z) H(W" z).

42
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Analysis of Filter Banks: Modulation Domain

* A 2-channel example:
— Replacing decimation+upsamling by modulation

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Modulation Domain

* A 2-channel example:

— Pulling modulated filters
into modulation path %

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
44
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Analysis of Filter Banks: Modulation Domain

* A 2-channel example:

— Pulling modulated filters
into modulation path %

4

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Modulation Domain

* A 2-channel example:
— We finally get the system as matrix of modulated filters

Analysis:

V(o) = % (HO(Z) Ho(—Z)) ( X (2) )

Synthesis: Hy(z) Hi(-2)) \X(=2)

X(2) = (Go(2) G1(2))Y(2) Hn

(-1

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Using this approach to replace up- and downsampling in our filter bank structure (2
channel example), we find the modulation domain representation with isfpieutiput
multiple output (MIMO) transfer matrix, containing modulated versions oftiaysis
filters. Note that the output of the analysis section is calculatdtedtigh sampling
rate. The synthesis filters remain unchanged. The advantage of tlutustris that the
insertion of decimators and expanders before re-synthesis, accordnegrtomber of
modulated signals, doesn'‘t effect the output.
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Analysis of Filter Banks: Modulation Domain

* A 2-channel example:
— We finally get the system as matrix of modulated filters

Analysis:
1 (Ho(z) Ho(—2)> <X(Z) )
Synthesis: 2 \Hi1(2) Hi(—2)) \X(-=)
X(2) = (Go(2) G1(2)) Hn

(-1

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Modulation Domain

» Perfect reconstruction:
(Biorthogonality)

1 Ho(z) Ho(—2)) [ X() | L
5 (Go(a) G1(2) (Hcl)(z) Hf(—@) <X<—z>>—X(z>

Hm

1 Ho(2) Ho(—2)) _ 1:1 transfer function
= (Go(2) G1(2)) (HS(Z) H?(—z)) =@ o)
)

Hm H(2) D— Gol2)
. Ho(—2) o 1 A

H(:) .
H eV | e
+ Orthonormality:
y 2 Hi(=2) &3 Gi(2)
X(-=2
iyt X(=2)
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Merging the analysis and synthesis equations, we get a description ofeihalb
transfer function. Desiring perfect reconstruction, the transfer fomdtir the
unmodulated X(z) has to be unity, and the modulated versions of the output must cancel

48
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Analysis of Filte

» Perfect reconstructi
(Biorthogonality)

L (Go() 61(2)
2

r Banks: Modulation Domain
on.

Ho(z) Ho(—z)><X(
Hi(z) Hi(—z)) \X(—

Hm
1 Ho(z) Ho(-2)\ _
:QG%Q)GKQ)@h@)Hﬂ—@ = (1
Hm X(2)
e Orthonormality: =
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Modulation Domain

» Perfect reconstruction:
(Biorthogonality)

1 < Go(2)  Gi(2) ) <Ho(2) Ho(—Z)) ( X(2) ) L (X(Z) )
2 \Go(—2) Gi(—2)) \Hi(2) Hi(-2)) \X(-=2) X(==2)

Gm Hm with mo_dul_ated
L 1(Go(®)  Gi() ) (Ho(z) Ho(—2)) _ Smhesisfiers:
2 \Go(=2) G1(—=2)) \H1(2) Hi(-=2) - €legant hotation:

Gm Hm 1
e Orthonormality:

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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We may also expand the synthesis filters with the modulated versione 6lténs. This
provides a compact notation that essentially says: All transfer functiahe of
modulated versions of X(¥z) have to yield *"X(W z)=X(W™ z) for n=m only, while
all the cross-modulation terms have to cancel (time-invariance).

50
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Analysis of Filter Banks: Modulation Domain

» Perfect reconstruction:
(Biorthogonality)

1 < Go(z) Gi1(2) ) <Ho(2) Ho(—Z)) ( X(2) ) L (X(Z) )
2 \Go(—2) Gi1(—=2)) \H1(2) H1(-2)) \X(—=2)

with modulated

Gm Hm
1( Go(z) Gi1(2) \ (Ho(z) Ho(—2) _1 synthesis filters: |
2 \Go(=2) Gi(=2)) \H1(z) Hi(=2)] — - elegant notation!
Gm Hm

1

e Orthonormality:
— Analysis filters are time reversed synthesis filters

—aT(,1 1 -
Hin(2) = Gm(71) 5Gm()Gm(="H =1
{}T is the hermitian transpose
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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In order to provide orhtonormality, again, the analysis filters have to erewversed
versions of the synthesis filters. In the z-Domain, this corresponds to tdking t
hermitian transpose (transpose and complex conjugate), as wéll as z

51
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Analysis of Filter Banks: Modulation Domain

» Aliased spectra . .
by modulgtion: e IER . g[n] & X (ze I TH)

(decimation
by N)

b

AR

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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The following slides shall illustrate, how the more general case of déicmiay N, as
well as the N-channel filter bank can be constructed in the modulationidoma
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Analysis of Filter Banks: Modulation Domain

» Aliased spectra
by modulation: single filter, decimation by N
— Replacing decimation and upsampling by modulation
— Pulling filters into modulation paths

H(z) @ @ = % H(ze‘j%(N_l)”)—’(\ HD—

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Modulation Domain

» Aliased spectra
by modulation: N channel filter bank
— Modulation domain for N-channel filter banks

HO(Zefj()n)

7@* Xo(2)

HN71(267JO71)

HO(Ze—]'QW”(N—l)n)

1

N

e IR (L-1)n Hy (Zefj%wfl)”)

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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. Stefan Mendel & Franz Zotter 22.5. 2007

Analysis of Filter Banks: Modulation Domain

» Perfect reconstruction: arbitrary N-channel case
(Biorthogonality)

Go (e’j%oz) .. Gn-1 (e’j%oz)
with modulated Gm = : :

synthesis filters Go (eﬁf%(f\'fl)z) .. Gy (efj%uvfnz)

1 X (e7730%) . X(e750%)
NGm(z)Hm(z) . : = :
X (e TEW-1)y) X (e 7FN1z)

e Orthonormality:

Discrete-Time Bases and Filter Banks

55

Basically, the extended notation for the N-channel case is sinildoret 2-channel case
given before. Using the above notation, the conditions for perfect reconstruction
(biorthogonality) and orthonormality are the same, except for the norriahizarm

1/N.

55




Advanced Signal Processing Seminar " Grazm

Analysis of Filter Banks: Modulation Domain

» Perfect reconstruction: arbitrary N-channel case

Biorthogonalit on .

( 9 y) Go (e‘].\_'oz) . Gn-1 (e‘JTOz)
with modulated Gm = g P
synthesis filters Go (e7FON1z) . Gy (e7TFND2)

1 X (e773%%) . X(e750%)
NGm(z)Hm(z) . : = :
X(e—j%(N—l)z) X(e—j%(N—l)z)

1
e Orthonormality:
— Analysis filters are time reversed synthesis filters
_ 1
Hm(z) = Gpu(z™H) ~Cm(:)GRGT) =1

{}T is the hermitian transpose

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Polyphase Domain

» Polyphase implementation of anti-aliasing and
interpolation filters: A decimation by 2 example

(recall Mr. Saleem’s talk in 15t session)

H) Q) 2

Q
S
3
oY

1>

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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The third way to implement our filter bank is the polyphase domain. While the
modulation domain employed filters at the original sampling rate, the paggdomain

more efficiently utilizes the polyphase realizations of decimation anahistouction
filters, we already heard about.
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Analysis of Filter Banks: Polyphase Domain

» Decimation and upsampling: 2-channel example

) Hcn)

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Polyphase Domain

» Decimation and upsampling: 2-channel example
— Gathering common branches:

2 | Hy(z) :ﬁ'[: Goo(2)
— maH Had
2 )= Hy(2) ﬁ‘)'[: Gu(2)

I

(=) [

H(]l(Z)
Hio(2)
H 11(2’) 9
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Polyphase Domain

» Decimation and upsampling: 2-channel example

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Polyphase Domain

» Decimation and upsampling: 2-channel example
— Gathering common branches:

2 Hy(2) ﬁ'[: Goo(2)

S Hoy(2) Gu(2)
2} Hio(z) ﬁ‘)‘[: Gio(2)

Hi(z) Gul(z)

— O H
€T —>
Hp, (2)
~[FH
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Again, we yield a MIMO system for the analysis section, but in contrasieto
modulation domain for the synthesis here too.
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Analysis of Filter Banks: Polyphase Domain

» What's special about the “Polyphase-Domain”?

— We know what aliasing free polyphase transfer functions must look like:

Fo(z)  Fi(2) Fy_1(2)

zF1(z . Frn_o(z
pseudo-circulant F(z) = 1( ) N ;2( )
transfer function zFN_l(z) 2Fy(2) Fo(z)

No need for perfect
reconstruction here

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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A main advantage in the polyphase domain, besides its ressource efficient
implementation, is the concept of pseudo-circulant matrices. Given a gsHbr@

transfer function in polyphase domain, pseudo-circulant transfer matrices provide

aliasing free (time-invariant) output signals, as known from literateug (
Vaidyanathan). For alias free filter banks, only one joint transfertioman the

polyphase domain containing both, the analysis and synthesis matrix, is neédéd to

this condition.
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Analysis of Filter Banks: Polyphase Domain

» Decimation and upsampling: 2-channel example
— Analysis and Synthesis: ( z2 is used in the full sampling rate domain)

22 Z2
¥ = (o) o) (1) xe

Hp(2)

A 52 L2
%G = (1) (G0 o) v

Gp(2)

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Transcribing the polyphase transfer functions from the block diagramifathe

formulae these are expressed with respect to the full sampling rate ) sve can

now set up our analysis and syhthesis equations in matrix notation.
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Analysis of Filter Banks: Polyphase Domain

» Perfect reconstruction: 2-channel example

(1 21 <G00<z2> Glo<z2>> (Hoo<z2> H01<z2>> (1)21
Go1(22) G11(2?)) \H10(2?) H11(z?)) \z

Gp(z Hy(2)
p(2) p(Gp(z)Hp(z) 1

* Orthonormality:

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Polyphase Domain

» Perfect reconstruction: 2-channel example

(1 =1 (c:oo<z2> Glo<z2>> <H00(Z2) H01(Z2)> (1 0>=1
Go1(22) G11(22)) \H10(2?) H11(:?)) \0 =z

Gp(z) Hp(2)

: Gp(2)Hp(z) =1
« Orthonormality: PRTP
— Analysis filters are time reversed synthesis filters

Hp(2) = Gp(z71) Gp(2)Gp(z ") =1

{}T is the hermitian transpose

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Analysis of Filter Banks: Polyphase Domain

» Perfect reconstruction: 2-channel example

(1 271) (Goo(ZQ) G10(22)> <H00(Z2) H01(Z2)> (1 0> —1

Go1(2?) G11(2?)) \H10(2?) H11(2%)) \0 =
Gp(2) Hp(2)
o P G () Hp(2) = T

* Orthonormality:

— Analysis filters are time reversed synthesis filters

Hp(2) =Gp(="1)  Gp(2)Gp(=~H) =1

» Alias free:
Gp(2)Hp(z) pseudo-circulant
or det(Hp(z)) # 0, i.e. Hp(z) full rank

{}T is the hermitian transpose
. Stefan Mendel & Franz Zotter 22.5. 2007

Discrete-Time Bases and Filter Banks

66

Additionally to our criteria for perfect reconstruction (biorthogonaldyd its special
case, i.e. orthonormality, we gain a more relaxed criterion for &k&sreconstruction.

Further, if the determinant of the analysis matrix doesn‘t equal zeroyénequisites
for alias free reconstruction are fulfilled.
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Analysis of Filter Banks: Polyphase Domain

» The results from the 2-channel case can be generalized to
N-channel filter banks

@)
= G))

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Of course, like in the modulation domain before, we can extend the notabioNs f
channel filter banks. Here, the criteria remain exactly the sasgp ae-normalization
is involved.

67




Ty,

Advanced Signal Processing Seminar

Relations between Modulation & Polyphase Domain

* Analysis
Hoo(22) Ho1(2?) \ _ 1 ( Ho(z) Ho(-2) 11 10
Hio(2?) Hii(z?) 2\ Hi(z) Hi(-2) J\1 -1 {0 =1
Hp(zQ) Hin(2)
* Synthesis
Goo(#%) Go1(z®) Y _1(1 0 11 Go(z) Go(—2)
G10(2?) G11(2?) 2\ 0 2z J\1 -1 )\ Gi(2) Gi(—=)
Gp(22) Gm(z)
. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Now, given three variants of filter bank implementation and descriptiore(lomain,
modulation domain, and polyphase domain), it is very interesting to see that the
corresponding representaion can be connected analytically. First tifeattonnection
between modulation domain matrices Hm(z) with polyphase domain asn&lp$r)
consists of a delay matrix containing delaysand a modulation matrix with the
modulation terms. Similar expressions hold for the synthesis equations.

Actually, we can now freely choose between the domains of impementatioapahd
criteria of whatever domain on the corresponding filter set freely gsiste like.
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Relations between Time & Polyphase Domain

» Consider the time- domain synthesis matrix in the
frequency domain

K-la —i ~_( 9ol21] g1[2i]
Ts(2) = Xig Siz Si= (90[2i+1] 91[27;+1]>

Ts(2) = Gp(2)

» The same for the analysis matrix

ho[2(K — i) — 1] hg[2(K — i) — 2] )

_K-1pap _—i L —
Ta(z) =Xi=g Aiz"" A= ( hi[2(K —i) — 1] hi[2(K — i) — 2]

o) == K (2§ )

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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For the connection between time and polyphase domain, we can use NxN paofitions
the time domain analysis and synthesis matrices, to build z-transfornie analysis
case, delays are involved in the computation, too.
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Outline

* Introduction
— Orthonormality
— Biorthogonality

» Orthonormal expansions and filter banks
— Haar expansion
— Sinc expansion

» Analysis of filter banks
— Time domain
— Modulation domain
— Polyphase domain
— Relations between time, modulation, and polyphase domain

* Results on filter banks
— Biorthogonal Relations

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Reconstruction

e Alias free reconstruction

» Perfect reconstruction

— Filter bank output is a possibly scaled and delayed
version of the input

X(2) =cz7 kX (2)

. Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks
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Alias- free Reconstruction

* Polyphase domain
— Transfer matrix Ty is pseudocirculant

() — Foj—i(z)  j >4,
Fij(z) = { 2Fo N4 j—i(2) J<i.

— 2 channel case

_ [ Fo(z) Fi(2)
F (z)—<zF1<z> Fo<z>>

* Polyphase analysis filters

— Determinant of Hy(z) is not identically zero, so that Hy(z) has full rank

. Stefan Mendel & Franz Zotter 22.5. 2007

Discrete-Time Bases and Filter Banks
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. Stefan Mendel & Franz Zotter

Perfect Reconstruction
* FIR filter

— For a critically sampled FIR analysis filter bank, perfect
reconstruction with FIR filter is possible if and only if
det(H,(2)) is a pure delay.

— Cosine modulated filter banks

« All filters are calculated from one L= 2N length prototype low-
pass filter hy,[n] by modulatlon [- QN, =

* For perfect reconstruction h -] + hpr [N—-1—-4] =2
(power complementary)

* Cosine modulated filters form the orthonormal base:

hi[i] = \/%hp,[n] . cos (2 4+ (2n— N + 1)71')

22.5. 2007

Discrete-Time Bases and Filter Banks
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Summary of Biorthongonality Relations

These statements are equivalent

1) < hi[—n],gjln — Nm] >=6[i — j16[m]
2) T To=Tg Ts=1

3 +Gm(2)Hm(z) = $#Hm(2)Gm(z) =1

4) Gp(2)Hp(2) = Hp(2)Gp(2) =1

Biorthogonality is equal to perfect reconstruction

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Summary of Orthonormality Relations

These statements are equivalent

1) < gilnl,gjln + Nm] >= 8[i — j15[m]

2) T/ To=T, Tl =1 a=T{
3) £GL(=")Gm(z) = FGL(z)Gm(z) =1 | Hm(z) = Gz

4)  GL(=")Gp(2) = Gp(x)GL (=1 =1 Hy(2) = GL (1)

. Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks
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Main Reference

M. Vetterli and J. Kovacevic:
Wavelets and subband coding
Prentice Hall, 1995.
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Ty,

Thank you for your attention!

Please feel free to ask questions.
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