

Discrete-Time Bases and Filter Banks

Advances Signal Processing Seminar

Stefan Mendel & Franz Zotter

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Advanced Signal Processing Seminar

Outline

- Introduction
 - Orthonormality
 - Biorthogonality
- · Orthonormal expansions and filter banks
 - Haar expansionSinc expansion
- · Analysis of filter banks
 - Time domain
 - Modulation domain

 - Polyphase domainRelations between time, modulation, and polyphase domain
- Results on filter banks
 - Biorthogonal RelationsOrthogonal Relations

Stefan Mendel & Franz Zotter

22.5. 2007

Outline

- Introduction
 - Orthonormality
 - Biorthogonality
- Orthonormal expansions and filter banks
 - Haar expansionSinc expansion
- Analysis of filter banks
 - Time domain
 - Modulation domain
 - Polyphase domain
 - Relations between time, modulation, and polyphase domain
- Results on filter banks
 - Biorthogonal Relations
 - Orthogonal Relations

Stefan Mendel & Franz Zotter

22.5, 2007

Discrete-Time Bases and Filter Banks

Advanced Signal Processing Semina

Orthonormal Expansion

- Sequence x[n] is square-summable $x[n] \in l_2(\mathcal{Z})$
- $x[n] = \sum_{k \in \mathcal{Z}} \langle arphi_k[l], x[l]
 angle arphi_k[n] = \sum_{k \in \mathcal{Z}} X[k] arphi_k[n]$ Expansion
- $X[k] = \langle \varphi_k[l], x[l] \rangle = \sum_l \varphi_k^*[l] x[l]$ Transform
- $\langle \varphi_k[n], \varphi_l[n] \rangle = \delta[k-l]$ Orthonormality
- $||x||^2 = ||X||^2$ Conservation of energy

Stefan Mendel & Franz Zotter

22.5. 2007

Orthogonal: Example

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Biorthogonal Expansion

- $x[n] = \sum_{k \in \mathcal{Z}} \langle \varphi_k[l], x[l] \rangle \tilde{\varphi}_k[n] = \sum_{k \in \mathcal{Z}} \tilde{X}[k] \tilde{\varphi}_k[n]$ • Expansion $= \sum_{k \in \mathcal{Z}} \langle \tilde{\varphi}_k[l], x[l] \rangle \varphi_k[n] = \sum_{k \in \mathcal{Z}} X[k] \varphi_k[n]$
- $\tilde{X}[k] = \langle \varphi_k[l], x[l] \rangle$ and $X[k] = \langle \tilde{\varphi}_k[l], x[l] \rangle$ Transform
- Conservation of energy $||x||^2 = \langle X[k], \tilde{X}[k] \rangle$

Stefan Mendel & Franz Zotter

Biorthogonal: Example

Advanced Signal Processing Seminar

Biorthogonal: Example

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Biorthogonal: Example

Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Bases and Filter Banks

0

Advanced Signal Processing Seminal

Biorthogonal: Example

Biorthogonal: Example Reconstruction

11

Advanced Signal Processing Seminar

Biorthogonal: Example Reconstruction

Biorthogonal: Example Reconstruction

$$x = \left(\begin{array}{c} 0\\0.5 \end{array}\right)$$

$$x[n] = \sum_{k \in \mathcal{Z}} X[k] \varphi_k[n]$$

$$X[k] = \langle \tilde{\varphi}_k[l], x[l] \rangle$$

$$X[0] = 0.5$$

$$X[1] = -0.5$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Biorthogonal: Example Reconstruction

$$x = \left(\begin{array}{c} 0\\0.5 \end{array}\right)$$

$$x[n] = \sum_{k \in \mathcal{Z}} X[k] \varphi_k[n]$$

$$X[k] = \langle \tilde{\varphi}_k[l], x[l] \rangle$$

Stefan Mendel & Franz Zotter

22.5. 2007

Biorthogonal: Example Reconstruction

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Advanced Signal Processing Seminar

Outline

- Introduction
 - Orthonormality
 - Biorthogonality
- Orthonormal expansions and filter banks
 - Haar expansion Haar expansionSinc expansion
- Analysis of filter banks
 - Time domain
 - Modulation domain
 - Polyphase domain
 - Relations between time, modulation, and polyphase domain
- Results on filter banks
 - Biorthogonal Relations
 - Orthogonal Relations

Stefan Mendel & Franz Zotter

22.5. 2007

Haar Expansion

Basis functions

$$\varphi_{2k}[n] = \begin{cases}
\frac{1}{\sqrt{2}} & n = 2k, 2k + 1, \\
0 & \text{otherwise,}
\end{cases}$$
 $\varphi_{2k+1}[n] = \begin{cases}
\frac{1}{\sqrt{2}} & n = 2k, \\
-\frac{1}{\sqrt{2}} & n = 2k + 1, \\
0 & \text{otherwise.}
\end{cases}$

Time-varying periodic

$$\varphi_{2k}[n] = \varphi_0[n-2k], \quad \varphi_{2k+1}[n] = \varphi_1[n-2k]$$

• Transform $X[2k] = \langle \varphi_{2k}, x \rangle = \frac{1}{\sqrt{2}} \left(x[2k] + x[2k+1] \right)$ $X[2k+1] = \langle \varphi_{2k+1}, x \rangle = \frac{1}{\sqrt{2}} \left(x[2k] - x[2k+1] \right)$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

17

Advanced Signal Processing Semina

Haar Expansion & Filterbanks

• Filter $h_0[n] = \left\{ \begin{array}{cc} \frac{1}{\sqrt{2}} & n = -1, 0, \\ 0 & \text{otherwise,} \end{array} \right. \quad h_1[n] = \left\{ \begin{array}{cc} \frac{1}{\sqrt{2}} & n = 0, \\ -\frac{1}{\sqrt{2}} & n = -1, \\ 0 & \text{otherwise} \end{array} \right.$

$$h_0[n] * x[n] \bigg|_{n=2k} = \sum_{l \in \mathcal{Z}} h_0[2k - l] x[l] = \frac{1}{\sqrt{2}} x[2k] + \frac{1}{\sqrt{2}} x[2k + 1] = X[2k]$$

$$h_1[n] * x[n] \bigg|_{n=2k} = \sum_{l \in \mathcal{Z}} h_1[2k - l] x[l] = \frac{1}{\sqrt{2}} x[2k] - \frac{1}{\sqrt{2}} x[2k + 1] = X[2k + 1]$$

Filters $h_0[n]$ and $h_1[n]$ followed by downsampling by 2 implement \mathcal{G}_0 and \mathcal{G}_1

$$h_0[n] = \varphi_0[-n], h_1[n] = \varphi_1[-n]$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Time-Domain Analysis

$$\begin{pmatrix} \vdots \\ y_0[0] \\ y_1[0] \\ y_0[1] \\ y_1[1] \\ \vdots \end{pmatrix} = \begin{pmatrix} \vdots \\ X[0] \\ X[1] \\ X[2] \\ X[3] \\ \vdots \end{pmatrix} = \begin{pmatrix} \ddots & & & \\ \overbrace{h_0[0]h_0[-1]} & & & \\ \underbrace{h_1[0]h_1[-1]}_{\varphi_1[n]} & & & \\ & \underbrace{h_0[0]h_0[-1]}_{\varphi_1[n]} & & \\ & \vdots & & \\ & & \underbrace{h_0[0]h_0[-1]}_{\varphi_1[n]} & & \\ & \vdots & & \\ & & \underbrace{h_0[0]h_0[-1]}_{\varphi_1[n]} & & \\ & \vdots & & \\ & & \underbrace{h_0[0]h_0[-1]}_{\varphi_1[n]} & & \\ & \vdots & & \\ & & \underbrace{h_0[0]h_0[-1]}_{\varphi_1[n]} & & \\ & \vdots & & \\ & & \underbrace{h_0[0]h_0[-1]}_{\varphi_1[n]} & & \\ & \vdots & & \\ & & \underbrace{h_0[0]h_0[-1]}_{\varphi_1[n]} & & \\ & \underbrace{h_0[0]$$

Stefan Mendel & Franz Zotter

22.5, 2007

Discrete-Time Bases and Filter Banks

19

Advanced Signal Processing Semina

Reconstruction

- Filter $g_0[n] = \varphi_0[n], g_1[n] = \varphi_1[n]$
- Periodic $\varphi_{2k}[n] = g_0[n-2k], \varphi_{2k+1}[n] = g_1[n-2k]$

$$x[n] = \sum_{k \in \mathcal{Z}} X[k] \varphi_k[n]$$

$$= \sum_{k \in \mathcal{Z}} X[2k] \varphi_{2k}[n] + \sum_{k \in \mathcal{Z}} X[2k+1] \varphi_{2k+1}[n]$$

$$= \sum_{k \in \mathcal{Z}} y_0[k] g_0[n-2k] + \sum_{k \in \mathcal{Z}} y_1[k] g_1[n-2k]$$

Upsampling by 2 followed by convolution with gi

Stefan Mendel & Franz Zotte

22.5. 2007

Discrete-Time Bases and Filter Bank

Filterbank

- Synthesis Filter $g_i[n] = \varphi_i[n]$
- Analysis Filter $h_i[n] = \varphi_i[-n]$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

21

Advanced Signal Processing Seminar

Filterbank

$$y_0[k] = X[2k] = \frac{1}{\sqrt{2}}x[2k] + \frac{1}{\sqrt{2}}x[2k+1]$$

$$y_1[k] = X[2k+1] = \frac{1}{\sqrt{2}}x[2k] - \frac{1}{\sqrt{2}}x[2k+1]$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Expansion Example – Analysis Filter

Haar Example - Downsampling

Filterbank

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

25

Advanced Signal Processing Seminal

Haar Example - Upsampling

Filterbank

$$x_1[2k] = x_1[2k+1] = \frac{1}{2}x[2k] + \frac{1}{2}x[2k+1]$$

Stefan Mendel & Franz Zotter

22 5 2007

 $x_1[2k+1] = -\frac{1}{2}x[2k] + \frac{1}{2}x[2k+1]$ 2007 Discrete-Time Bases and Filter Banks

27

Advanced Signal Processing Seminar

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Advanced Signal Processing Semina

Haar Example – Synthesis Filter

Haar Example - Reconstruction

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

31

Advanced Signal Processing Seminar

Sinc Expansion

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Orthogonal Expansions - Summary

- Synthesis filter $g_i[n] = \varphi_i[n]$
- $h_i[n] = g_i[-n] = \varphi_i[-n]$ Analysis filter
- · Expansions are periodically time- varying
- Haar expansion
 - Good time resolution
- Sinc expansion
 - Good frequency resolution

Stefan Mendel & Franz Zotter

22.5, 2007

Discrete-Time Bases and Filter Banks

Advanced Signal Processing Seminar

Outline

- Introduction
 - Orthonormality
 - Biorthogonality
- · Orthonormal expansions and filter banks
 - Haar expansion
 - Haar expansionSinc expansion
- Analysis of filter banks
 - Time domain
 - **Modulation domain**
 - Polyphase domain
 - Relations between time, modulation, and polyphase domain
- Results on filter banks
 - Biorthogonal Relations
 - Orthogonal Relations

Stefan Mendel & Franz Zotter

22.5. 2007

Analysis of Filter Banks: Time Domain

- Analysis: $y_k[n]=x[n]\star h_k[n] \ = \ < x[n], h_k[-n]>$ $\Rightarrow h_k[-n]=\tilde{\varphi}_k[n], \text{ i.e. non-causal filter}$
- Synthesis: $\widehat{x}[bN+n] = \sum_{k=0}^{N} \sum_{m=b-n/N}^{\frac{L-1-n}{N}-b} y_k[lN] \cdot g_k[mN-bN+n]$ $\Rightarrow g_k[n] = \varphi_k[n]$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

35

Advanced Signal Processing Semina

Analysis of Filter Banks: Time Domain

Synthesis/analysis: decimated, interlaced channels:

Analysis:
$$\tilde{X} = T_a \cdot x$$

Synthesis:
$$y = T_s \cdot \tilde{X}$$

$$\begin{pmatrix} \vdots \\ y_0[0] \\ y_1[0] \\ y_0[2] \\ y_1[2] \\ \vdots \end{pmatrix} = \mathbf{T_a} \cdot \begin{pmatrix} \vdots \\ x[0] \\ x[1] \\ x[2] \\ x[3] \\ \vdots \end{pmatrix}$$

$$\begin{pmatrix} \vdots \\ \hat{x}[0] \\ \hat{x}[1] \\ \hat{x}[2] \\ \hat{x}[3] \\ \vdots \end{pmatrix} = \mathbf{T}_{s} \cdot \begin{pmatrix} \vdots \\ y_{0}[0] \\ y_{1}[0] \\ y_{0}[2] \\ y_{1}[2] \\ \vdots \end{pmatrix}$$

Stefan Mendel & Franz Zotter

22.5. 2007

Analysis of Filter Banks: Time Domain

• Decimated, interlaced: Analysis

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

37

Advanced Signal Processing Seminar

Analysis of Filter Banks: Time Domain

Analysis of Filter Banks: Time Domain

Stefan Mendel & Franz Zotter 22.5. 2007 Discrete-Time Ba

39

Advanced Signal Processing Seminar

Analysis of Filter Banks: Modulation Domain

• Aliased spectra by modulation: A decimation by 2 example

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

- Aliased spectra by modulation: A decimation by 2 example
 - Replacing decimation and upsampling by modulation

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

41

Advanced Signal Processing Seminar

Analysis of Filter Banks: Modulation Domain

- Aliased spectra by modulation: A decimation by 2 example
 - Replacing decimation and upsampling by modulation
 - Employing modulated versions of the filter

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

- A 2-channel example:
 - Replacing decimation+upsamling by modulation

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

43

Advanced Signal Processing Seminar

Analysis of Filter Banks: Modulation Domain

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

A 2-channel example:

 Pulling modulated filters into modulation path

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Analysis of Filter Banks: Modulation Domain

- A 2-channel example:
 - We finally get the system as matrix of modulated filters

Synthesis:

Stefan Mendel & Franz Zotter

22.5. 2007

A 2-channel example:

- We finally get the system as matrix of modulated filters

Stefan Mendel & Franz Zotte

22.5. 2007

Discrete-Time Bases and Filter Banks

Analysis of Filter Banks: Modulation Domain

Perfect reconstruction: (Biorthogonality)

$$\frac{1}{2} \begin{pmatrix} G_0(z) & G_1(z) \end{pmatrix} \underbrace{\begin{pmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{pmatrix}}_{\mathbf{H_m}} \begin{pmatrix} X(z) \\ X(-z) \end{pmatrix} \stackrel{!}{=} X(z)$$

$$\Rightarrow \frac{1}{2} \begin{pmatrix} G_0(z) & G_1(z) \end{pmatrix} \underbrace{\begin{pmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ X(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0(z) \end{pmatrix}}_{\mathbf{H_m}} = \underbrace{\begin{pmatrix} X(z) & H_0(z) \\ Y(-z) & H_0($$

Orthonormality:

Stefan Mendel & Franz Zotte

22.5. 2007

Perfect reconstruction:

(Biorthogonality)

$$\frac{1}{2} \begin{pmatrix} G_0(z) & G_1(z) \end{pmatrix} \underbrace{\begin{pmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{pmatrix}}_{\mathbf{H_m}} \begin{pmatrix} X(z) \\ X(-z) \end{pmatrix} \stackrel{!}{=} X(z)$$

$$\Rightarrow \frac{1}{2} \begin{pmatrix} G_0(z) & G_1(z) \end{pmatrix} \underbrace{\begin{pmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{pmatrix}}_{\mathbf{H_m}} = \begin{pmatrix} \mathbf{1} & \mathbf{0} \end{pmatrix} \quad \text{no aliasing}$$

$$\mathbf{H_m} \quad \mathbf{H_m} \quad \mathbf{H_$$

Orthonormality:

22.5, 2007

Discrete-Time Bases and Filter Banks

Analysis of Filter Banks: Modulation Domain

Perfect reconstruction:

(Biorthogonality)

$$\begin{array}{c} \text{(Biorthogonality)} \\ \frac{1}{2}\underbrace{\begin{pmatrix} G_0(z) & G_1(z) \\ G_0(-z) & G_1(-z) \end{pmatrix}}_{\mathbf{G}_{\mathbf{m}}}\underbrace{\begin{pmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{pmatrix}}_{\mathbf{H}_{\mathbf{m}}} \underbrace{\begin{pmatrix} X(z) \\ X(-z) \end{pmatrix}}_{\mathbf{M}_{\mathbf{m}}} \underbrace{= \begin{pmatrix} X(z) \\ X(-z) \end{pmatrix}}_{\mathbf{$$

Orthonormality:

Stefan Mendel & Franz Zotter

22.5. 2007

• Perfect reconstruction:

(Biorthogonality)

$$\frac{1}{2}\underbrace{\begin{pmatrix} G_0(z) & G_1(z) \\ G_0(-z) & G_1(-z) \end{pmatrix}}_{\mathbf{G}_{\mathbf{m}}}\underbrace{\begin{pmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{pmatrix}}_{\mathbf{H}_{\mathbf{m}}} \begin{pmatrix} X(z) \\ X(-z) \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} X(z) \\ X(-z) \end{pmatrix}$$

$$\Rightarrow \frac{1}{2}\underbrace{\begin{pmatrix} G_0(z) & G_1(z) \\ G_0(-z) & G_1(-z) \end{pmatrix}}_{\mathbf{G}_{\mathbf{m}}}\underbrace{\begin{pmatrix} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{pmatrix}}_{\mathbf{H}_{\mathbf{m}}} = \mathbf{I} \qquad \text{with modulated synthesis filters: - elegant notation!}_{\mathbf{G}_{\mathbf{m}}}$$

$$\frac{1}{2}\mathbf{G}_{\mathbf{m}}(z)\mathbf{H}_{\mathbf{m}}(z) = \mathbf{I}$$

· Orthonormality:

- Analysis filters are time reversed synthesis filters

$$\begin{split} \mathbf{H}_{\mathbf{m}}(z) &= \mathbf{G}_{\mathbf{m}}^{\mathbf{T}}(z^{-1}) & \frac{1}{2}\mathbf{G}_{\mathbf{m}}(z)\mathbf{G}_{\mathbf{m}}^{\mathbf{T}}(z^{-1}) = \mathbf{I} \\ \{\}^{\mathbf{T}} \text{ is the hermitian transpose} \end{split}$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

51

Advanced Signal Processing Semina

Analysis of Filter Banks: Modulation Domain

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Aliased spectra

by modulation: single filter, decimation by N

- Replacing decimation and upsampling by modulation
- Pulling filters into modulation paths

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

53

Advanced Signal Processing Seminar

Analysis of Filter Banks: Modulation Domain

Aliased spectra

by modulation: N channel filter bank

- Modulation domain for N-channel filter banks

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Perfect reconstruction: arbitrary N-channel case

(1) $\mathbf{G_{m}} = \begin{pmatrix} G_{0} \left(e^{-j\frac{2\pi}{N}0}z \right) & \dots & G_{N-1} \left(e^{-j\frac{2\pi}{N}0}z \right) \\ \vdots & \dots & \vdots \\ G_{0} \left(e^{-j\frac{2\pi}{N}(N-1)}z \right) & \dots & G_{N-1} \left(e^{-j\frac{2\pi}{N}(N-1)}z \right) \end{pmatrix}$ with modulated synthesis filters

$$\frac{1}{N}\mathbf{G}_{\mathbf{m}}(z)\mathbf{H}_{\mathbf{m}}(z)\cdot\begin{pmatrix}X(e^{-j\frac{2\pi}{N}0}z)\\ \vdots\\ X(e^{-j\frac{2\pi}{N}(N-1)}z)\end{pmatrix}\stackrel{!}{=}\begin{pmatrix}X(e^{-j\frac{2\pi}{N}0}z)\\ \vdots\\ X(e^{-j\frac{2\pi}{N}(N-1)}z)\end{pmatrix}$$

$$\frac{1}{N}\mathbf{G_m} \cdot \mathbf{H_m} = \mathbf{I}$$

Orthonormality:

Stefan Mendel & Franz Zotter

22.5, 2007

Analysis of Filter Banks: Modulation Domain

 Perfect reconstruction: arbitrary N-channel case (Biorthogonality)

 $\begin{aligned} & \text{(Biorthogonality)} \\ & \text{with modulated} \\ & \text{synthesis filters} \end{aligned} \qquad \mathbf{G_m} = \begin{pmatrix} G_0\left(e^{-j\frac{2\pi}{N}0}z\right) & \dots & G_{N-1}\left(e^{-j\frac{2\pi}{N}0}z\right) \\ \vdots & \dots & \vdots \\ G_0\left(e^{-j\frac{2\pi}{N}(N-1)}z\right) & \dots & G_{N-1}\left(e^{-j\frac{2\pi}{N}(N-1)}z\right) \end{pmatrix} \\ & \frac{1}{N}\mathbf{G_m}(z)\mathbf{H_m}(z) \cdot \begin{pmatrix} X(e^{-j\frac{2\pi}{N}0}z) \\ \vdots \\ X(e^{-j\frac{2\pi}{N}(N-1)}z) \end{pmatrix} \overset{!}{=} \begin{pmatrix} X(e^{-j\frac{2\pi}{N}0}z) \\ \vdots \\ X(e^{-j\frac{2\pi}{N}(N-1)}z) \end{pmatrix} \end{aligned}$

$$\frac{1}{N}\mathbf{G}_{\mathbf{m}}(z)\mathbf{H}_{\mathbf{m}}(z)\cdot\begin{pmatrix}X(e^{-j\frac{\pi}{N}0}z)\\\vdots\\X(e^{-j\frac{2\pi}{N}(N-1)}z)\end{pmatrix}\stackrel{!}{=}\begin{pmatrix}X(e^{-j\frac{\pi}{N}0}z)\\\vdots\\X(e^{-j\frac{2\pi}{N}(N-1)}z)\end{pmatrix}$$

$$\frac{1}{N}\mathbf{G_m} \cdot \mathbf{H_m} = \mathbf{I}$$

- Orthonormality:
 - Analysis filters are time reversed synthesis filters

$$\begin{aligned} \mathbf{H}_{\mathbf{m}}(z) &= \mathbf{G}_{\mathbf{m}}^{\mathbf{T}}(z^{-1}) & \frac{1}{N}\mathbf{G}_{\mathbf{m}}(z)\mathbf{G}_{\mathbf{m}}^{\mathbf{T}}(z^{-1}) = \mathbf{I} \\ \{\}^{\mathbf{T}} \text{ is the hermitian transpose} \end{aligned}$$

Stefan Mendel & Franz Zotter

 Polyphase implementation of anti-aliasing and interpolation filters: A decimation by 2 example

(recall Mr. Saleem's talk in 1st session)

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

57

Advanced Signal Processing Seminal

Analysis of Filter Banks: Polyphase Domain

• Decimation and upsampling: 2-channel example

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

- Decimation and upsampling: 2-channel example
 - Gathering common branches:

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

59

Advanced Signal Processing Semina

Analysis of Filter Banks: Polyphase Domain

- Decimation and upsampling: 2-channel example
 - Gathering common branches:

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

- Decimation and upsampling: 2-channel example
 - Gathering common branches:

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

61

Advanced Signal Processing Semina

Analysis of Filter Banks: Polyphase Domain

- What's special about the "Polyphase-Domain"?
 - We know what **aliasing free** polyphase transfer functions must look like:

No need for perfect reconstruction here

Stefan Mendel & Franz Zotter

22.5. 200

Discrete-Time Bases and Filter Banks

- · Decimation and upsampling: 2-channel example
 - Analysis and Synthesis: (z^2 is used in the full sampling rate domain)

$$\hat{X}(z) = \begin{pmatrix} 1 & z^{-1} \end{pmatrix} \underbrace{\begin{pmatrix} G_{00}(z^2) & G_{10}(z^2) \\ G_{01}(z^2) & G_{11}(z^2) \end{pmatrix}}_{\mathbf{G_{D}}(z)} \mathbf{Y}(z^2)$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

63

Advanced Signal Processing Semina

Analysis of Filter Banks: Polyphase Domain

• Perfect reconstruction: 2-channel example

$$(1 \ z^{-1}) \underbrace{\begin{pmatrix} G_{00}(z^2) & G_{10}(z^2) \\ G_{01}(z^2) & G_{11}(z^2) \end{pmatrix}}_{\mathbf{G_p}(z)} \underbrace{\begin{pmatrix} H_{00}(z^2) & H_{01}(z^2) \\ H_{10}(z^2) & H_{11}(z^2) \end{pmatrix}}_{\mathbf{H_p}(z)} \begin{pmatrix} 1 \\ z \end{pmatrix} = \mathbf{I}$$
Orthonormality:

Orthonormality:

· Perfect reconstruction: 2-channel example

- Orthonormality:
 - Analysis filters are time reversed synthesis filters

$$H_p(z) = G_p^T(z^{-1}) \qquad G_p(z)G_p^T(z^{-1}) = I$$

 $\{\}^T$ is the hermitian transpose

Analysis of Filter Banks: Polyphase Domain

• Perfect reconstruction: 2-channel example

$$(1 \ z^{-1}) \underbrace{\begin{pmatrix} G_{00}(z^2) & G_{10}(z^2) \\ G_{01}(z^2) & G_{11}(z^2) \end{pmatrix}}_{\mathbf{G_p}(z)} \underbrace{\begin{pmatrix} H_{00}(z^2) & H_{01}(z^2) \\ H_{10}(z^2) & H_{11}(z^2) \end{pmatrix}}_{\mathbf{H_p}(z)} \begin{pmatrix} 1 & 0 \\ 0 & z \end{pmatrix} = \mathbf{I}$$
 Orthonormality:
$$\mathbf{G_p}(z) \mathbf{H_p}(z) = \mathbf{I}$$

- Orthonormality:
 - Analysis filters are time reversed synthesis filters

$$H_p(z) = G_p^T(z^{-1})$$
 $G_p(z)G_p^T(z^{-1}) = I$

· Alias free:

$$G_p(z)H_p(z)$$
 pseudo-circulant or $det(H_p(z)) \neq$ 0, i.e. $H_p(z)$ full rank $\{\}^T$ is the hermitian transpose

Stefan Mendel & Franz Zotte

 The results from the 2-channel case can be generalized to N-channel filter banks

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

67

Advanced Signal Processing Seminar

Relations between Modulation & Polyphase Domain

Analysis

$$\underbrace{\left(\begin{array}{cc} H_{00}(z^2) & H_{01}(z^2) \\ H_{10}(z^2) & H_{11}(z^2) \end{array}\right)}_{H_p(z^2)} = \frac{1}{2} \underbrace{\left(\begin{array}{cc} H_0(z) & H_0(-z) \\ H_1(z) & H_1(-z) \end{array}\right)}_{H_m(z)} \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{cc} 1 & 0 \\ 0 & z^{-1} \end{array}\right)$$

Synthesis

$$\underbrace{\begin{pmatrix} G_{00}(z^2) & G_{01}(z^2) \\ G_{10}(z^2) & G_{11}(z^2) \end{pmatrix}}_{G_p(z^2)} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & z \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \underbrace{\begin{pmatrix} G_0(z) & G_0(-z) \\ G_1(z) & G_1(-z) \end{pmatrix}}_{G_m(z)}$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Relations between Time & Polyphase Domain

Consider the time- domain synthesis matrix in the frequency domain

$$\mathbf{T}_{s}(z) = \sum_{i=0}^{K-1} \mathbf{S}_{i} z^{-i} \qquad \mathbf{S}_{i} = \begin{pmatrix} g_{0}[2i] & g_{1}[2i] \\ g_{0}[2i+1] & g_{1}[2i+1] \end{pmatrix}$$

$$\mathbf{T}_{s}(z) = \mathbf{G}_{p}(z)$$

The same for the analysis matrix

$$\mathbf{T}_{a}(z) = \sum_{i=0}^{K-1} \mathbf{A}_{i} z^{-i} \quad \mathbf{A}_{i} = \begin{pmatrix} h_{0}[2(K-i)-1] & h_{0}[2(K-i)-2] \\ h_{1}[2(K-i)-1] & h_{1}[2(K-i)-2] \end{pmatrix}$$

$$\mathbf{T}_{a}(z) = z^{-K+1} \mathbf{H}_{p}(z^{-1}) \begin{pmatrix} 0 & 1 \\ z^{-1} & 0 \end{pmatrix}$$

Stefan Mendel & Franz Zotter

Discrete-Time Bases and Filter Banks

Advanced Signal Processing Seminar

Outline

- Introduction
 - Orthonormality
 - Biorthogonality
- Orthonormal expansions and filter banks
 - Haar expansion
 - Haar expansionSinc expansion
- Analysis of filter banks
 - Time domain
 - Modulation domain
 - Polyphase domain
 - Relations between time, modulation, and polyphase domain
- Results on filter banks
 - Biorthogonal Relations
 - Orthogonal Relations

Stefan Mendel & Franz Zotter

22.5. 2007

Reconstruction

- Alias free reconstruction
- Perfect reconstruction
 - Filter bank output is a possibly scaled and delayed version of the input

$$\hat{X}(z) = cz^{-k}X(z)$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

71

Advanced Signal Processing Seminar

Alias- free Reconstruction

- Polyphase domain
 - Transfer matrix T_P is pseudocirculant

$$F_{ij}(z) = \begin{cases} F_{0,j-i}(z) & j \ge i, \\ zF_{0,N+j-i}(z) & j < i. \end{cases}$$

- 2 channel case

$$F(z) = \begin{pmatrix} F_0(z) & F_1(z) \\ zF_1(z) & F_0(z) \end{pmatrix}$$

- Polyphase analysis filters
 - Determinant of $H_p(z)$ is not identically zero, so that $H_p(z)$ has full rank

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Perfect Reconstruction

FIR filter

- For a critically sampled FIR analysis filter bank, perfect reconstruction with FIR filter is possible if and only if det(H_p(z)) is a pure delay.
- Cosine modulated filter banks
 - All filters are calculated from one L=2N length prototype low-pass filter $h_{pr}[n]$ by modulation $\left[-\frac{\pi}{2N},\frac{\pi}{2N}\right]$
 - For perfect reconstruction $h_{pr}^2[i] + h_{pr}^2[N-1-i] = 2$ (power complementary)
 - Cosine modulated filters form the orthonormal base:

$$h_k[i] = \frac{1}{\sqrt{N}} h_{pr}[n] \cdot \cos\left(\frac{2k+1}{4N}(2n-N+1)\pi\right)$$

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

73

Advanced Signal Processing Semina

Summary of Biorthongonality Relations

These statements are equivalent

1)
$$\langle h_i[-n], g_j[n-Nm] \rangle = \delta[i-j]\delta[m]$$

2)
$$\mathbf{T}_s \cdot \mathbf{T}_a = \mathbf{T}_a \cdot \mathbf{T}_s = \mathbf{I}$$

3)
$$\frac{1}{N}\mathbf{G}_m(z)\mathbf{H}_m(z) = \frac{1}{N}\mathbf{H}_m(z)\mathbf{G}_m(z) = \mathbf{I}$$

4)
$$\mathbf{G}_p(z)\mathbf{H}_p(z) = \mathbf{H}_p(z)\mathbf{G}_p(z) = \mathbf{I}$$

Biorthogonality is equal to perfect reconstruction

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks

Summary of Orthonormality Relations

These statements are equivalent

1)
$$\langle g_i[n], g_j[n+Nm] \rangle = \delta[i-j]\delta[m]$$

2)
$$\mathbf{T}_s^T \cdot \mathbf{T}_s = \mathbf{T}_s \cdot \mathbf{T}_s^T = \mathbf{I}_s$$

$$T_a = T_s^T$$

2)
$$\mathbf{T}_{s}^{T} \cdot \mathbf{T}_{s} = \mathbf{T}_{s} \cdot \mathbf{T}_{s}^{T} = \mathbf{I}$$
 $\mathbf{T}_{a} = \mathbf{T}_{s}^{T}$

3) $\frac{1}{N} \mathbf{G}_{m}^{T}(z^{-1}) \mathbf{G}_{m}(z) = \frac{1}{N} \mathbf{G}_{m}^{T}(z^{-1}) \mathbf{G}_{m}(z) = \mathbf{I}$ $\mathbf{H}_{m}(z) = \mathbf{G}_{m}^{T}(z^{-1})$

4) $\mathbf{G}_{p}^{T}(z^{-1}) \mathbf{G}_{p}(z) = \mathbf{G}_{p}(z) \mathbf{G}_{p}^{T}(z^{-1}) = \mathbf{I}$ $\mathbf{H}_{p}(z) = \mathbf{G}_{p}^{T}(z^{-1})$

$$\mathbf{H}_m(z) = \mathbf{G}_m^T(z^{-1})$$

4)
$$\mathbf{G}_{p}^{T}(z^{-1})\mathbf{G}_{p}(z) = \mathbf{G}_{p}(z)\mathbf{G}_{p}^{T}(z^{-1}) = \mathbf{I}$$

$$\mathbf{H}_p(z) = \mathbf{G}_p^T(z^{-1})$$

Stefan Mendel & Franz Zotter

Advanced Signal Processing Seminar

Main Reference

M. Vetterli and J. Kovacevic:

Wavelets and subband coding

Prentice Hall, 1995.

Thank you for your attention!

Please feel free to ask questions.

Stefan Mendel & Franz Zotter

22.5. 2007

Discrete-Time Bases and Filter Banks